Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Neis is active.

Publication


Featured researches published by Pascal Neis.


Future Internet | 2011

The Street Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011

Pascal Neis; Dennis Zielstra; Alexander Zipf

The OpenStreetMap (OSM) project is a prime example in the field of Volunteered Geographic Information (VGI). Worldwide, several hundred thousand people are currently contributing information to the “free” geodatabase. However, the data contributions show a geographically heterogeneous pattern around the globe. Germany counts as one of the most active countries in OSM; thus, the German street network has undergone an extensive development in recent years. The question that remains is this: How does the street network perform in a relative comparison with a commercial dataset? By means of a variety of studies, we show that the difference between the OSM street network for car navigation in Germany and a comparable proprietary dataset was only 9% in June 2011. The results of our analysis regarding the entire street network showed that OSM even exceeds the information provided by the proprietary dataset by 27%. Further analyses show on what scale errors can be reckoned with in the topology of the street network, and the completeness of turn restrictions and street name information. In addition to the analyses conducted over the past few years, projections have additionally been made about the point in time by which the OSM dataset for Germany can be considered “complete” in relative comparison to a commercial dataset.


Transactions in Gis | 2014

A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis

Christopher Barron; Pascal Neis; Alexander Zipf

OpenStreetMap (OSM) is one of the most popular examples of a Volunteered Geographic Information (VGI) project. In the past years it has become a serious alternative source for geodata. Since the quality of OSM data can vary strongly, different aspects have been investigated in several scientific studies. In most cases the data is compared with commercial or administrative datasets which, however, are not always accessible due to the lack of availability, contradictory licensing restrictions or high procurement costs. In this investigation a framework containing more than 25 methods and indicators is presented, allowing OSM quality assessments based solely on the datas history. Without the usage of a reference data set, approximate statements on OSM data quality are possible. For this purpose existing methods are taken up, developed further, and integrated into an extensible open source framework. This enables arbitrarily repeatable intrinsic OSM quality analyses for any part of the world.


International Journal of Geographical Information Science | 2014

Quality assessment for building footprints data on OpenStreetMap

Hongchao Fan; Alexander Zipf; Qing Fu; Pascal Neis

In the past two years, several applications of generating three-dimensional (3D) buildings from OpenStreetMap (OSM) have been made available, for instance, OSM-3D, OSM2World, OSM Building, etc. In these projects, 3D buildings are reconstructed using the buildings’ footprints and information about their attributes, which are documented as tags in OSM. Therefore, the quality of 3D buildings relies strongly on the quality of the building footprints data in OSM. This article is dedicated to a quality assessment of building footprints data in OSM for the German city of Munich, which is one of the most developed cities in OSM. The data are evaluated in terms of completeness, semantic accuracy, position accuracy, and shape accuracy by using building footprints in ATKIS (German Authority Topographic–Cartographic Information System) as reference data. The process contains three steps: finding correspondence between OSM and ATKIS data, calculating parameters of the four quality criteria, and statistical analysis. The results show that OSM footprint data in Munich have a high completeness and semantic accuracy. There is an offset of about four meters on average in terms of position accuracy. With respect to shape, OSM building footprints have a high similarity to those in ATKIS data. However, some architectural details are missing; hence, the OSM footprints can be regarded as a simplified version of those in ATKIS data.


Future Internet | 2014

Recent Developments and Future Trends in Volunteered Geographic Information Research: The Case of OpenStreetMap

Pascal Neis; Dennis Zielstra

User-generated content (UGC) platforms on the Internet have experienced a steep increase in data contributions in recent years. The ubiquitous usage of location-enabled devices, such as smartphones, allows contributors to share their geographic information on a number of selected online portals. The collected information is oftentimes referred to as volunteered geographic information (VGI). One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM), whose main goal it is to create a freely available geographic database of the world. This paper presents a comprehensive overview of the latest developments in VGI research, focusing on its collaboratively collected geodata and corresponding contributor patterns. Additionally, trends in the realm of OSM research are discussed, highlighting which aspects need to be investigated more closely in the near future.


Future Internet | 2013

Comparison of Volunteered Geographic Information Data Contributions and Community Development for Selected World Regions

Pascal Neis; Dennis Zielstra; Alexander Zipf

Volunteered Geographic Information (VGI) projects and their crowdsourced data have been the focus of a number of scientific analyses and investigations in recent years. Oftentimes the results show that the collaboratively collected geodata of one of the most popular VGI projects, OpenStreetMap (OSM), provides good coverage in urban areas when considering particular completeness factors. However, results can potentially vary significantly for different world regions. In this article, we conduct an analysis to determine similarities and differences in data contributions and community development in OSM between 12 selected urban areas of the world. Our findings showed significantly different results in data collection efforts and local OSM community sizes. European cities provide quantitatively larger amounts of geodata and number of contributors in OSM, resulting in a better representation of the real world in the dataset. Although the number of volunteers does not necessarily correlate with the general population density of the urban areas, similarities could be detected while comparing the percentage of different contributor groups and the number of changes they made to the OSM project. Further analyses show that socio-economic factors, such as income, can have an impact on the number of active contributors and the data provided in the analyzed areas. Furthermore, the results showed significant data contributions by members whose main territory of interest lies more than one thousand kilometers from the tested areas.


Transactions in Gis | 2013

Assessing the Effect of Data Imports on the Completeness of OpenStreetMap – A United States Case Study

Dennis Zielstra; Hartwig H. Hochmair; Pascal Neis

The assessment of OpenStreetMap (OSM) data quality has become an interdisciplinary research area over the recent years. The question of whether the OSM road network should be updated through periodic data imports from public domain data, or whether the currency of OSM data should rather rely on more traditional data collection efforts by active contributors, has led to perpetual debates within the OSM community. A US Census TIGER/Line 2005 import into OSM was accomplished in early 2008, which generated a road network foundation for the active community members in the US. In this study we perform a longitudinal analysis of road data for the US by comparing the development of OSM and TIGER/Line data since the initial TIGER/Line import. The analysis is performed for the 50 US states and the District of Columbia, and 70 Urbanized Areas. In almost all tested states and Urbanized Areas, OSM misses roads for motorized traffic when compared with TIGER/Line street data, while significant contri- butions could be observed in pedestrian related network data in OSM compared with corresponding TIGER/Line data. We conclude that the quality of OSM road data could be improved through new OSM editor tools allowing contributors to trace current TIGER/Line data.


Archive | 2008

Towards 3D Spatial Data Infrastructures (3D-SDI) based on open standards — experiences, results and future issues

Jens Basanow; Pascal Neis; Steffen Neubauer; Arne Schilling; Alexander Zipf

The creation of Spatial Data Infrastructures (SDI) has been an important and actively studied topic in geoscience research for years. It is also regarded in politics and by decision makers as leveraging technology for reducing thr time and cost of geo services for internal usage as well as for public information services. In Europe, the new INSPIRE (Infrastructure for Spatial Information in Europe) directive 2007/2/EC provides general rules for implementating national spatial data infrastructures for environmental policies. SDIs must rely on open standards specified by the Open Geospatial Consortium (CSW, WMS, WFS, WCS, WPS, OpenLS, etc.)


Transactions in Gis | 2015

Assessing the Completeness of Bicycle Trail and Lane Features in OpenStreetMap for the United States

Hartwig H. Hochmair; Dennis Zielstra; Pascal Neis

This article assesses the completeness of bicycle trail and on-street lane features in OpenStreetMap (OSM). Comparing OSM cycling features with reference data from local planning agencies for selected US Urbanized Areas shows that OSM bicycle trails tend to be more completely mapped than bicycle lanes. Manual evaluation of mapped cycling features in OSM and Google Maps for selected test areas within the Central Business Districts of Portland (OR) and Miami (FL) through comparison with governmental datasets, satellite imagery, and Google Street View, shows that the Bicycle layer in Google Maps can help to identify some missing or erroneously mapped OSM cycling links. However, Google Maps was also found to have some gaps in its data layers, suggesting that consultation of current trail and lane data from local planning authorities, if available, should be considered as an additional data source for bicycle related planning projects.


International Journal of Digital Earth | 2015

Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments

Carolin Klonner; Christopher Barron; Pascal Neis; Bernhard Höfle

OpenStreetMap (OSM) currently represents the most popular project of Volunteered Geographic Information (VGI): geodata are collected by common people and made available for public use. Airborne Laser Scanning (ALS) enables the acquisition of high-resolution digital elevation models that are used for many applications. This study combines the advantages of both ALS and OSM, offering a promising new approach that enhances data quality and allows change detection: the mainly up-to-date 2D data of OSM can be combined with the high-resolution – but rarely updated – elevation information provided by ALS. This case study investigates building objects of OSM and ALS data of the city of Bregenz, Austria. Data quality of OSM is discerned by the comparison of building footprints using different true positive definitions (e.g. overlapping area). High quality of OSM data is revealed, yet also limitations of each method with respect to heterogeneous regions and building outlines are identified. For the first time, an up-to-date Digital Surface Model (DSM) combining 2D OSM and ALS data is achieved. A multitude of applications such as flood simulations and solar potential assessments can directly benefit from this data combination, since their value and reliability strongly depend on an up-to-date DSM.


Transactions in Gis | 2015

Measuring the Reliability of Wheelchair User Route Planning based on Volunteered Geographic Information

Pascal Neis

The development of a wheelchair user friendly route planning application inherits a number of special requirements and details that need to be considered during the generation of the routing graph and the corresponding algorithm, making this task much more complex than car or pedestrian related applications. Each wheelchair type and, more importantly, each individual user might have different needs with regards to the way condition or other criteria. This study proposes a new approach to route planning for wheelchair users tailored for individual and personal requirements provided by the user and the calculation of a reliability factor of the computed wheelchair path. The routing graph is based on the freely available Volunteered Geographic Information (VGI) retrieved from the OpenStreetMap (OSM) project. The newly created algorithm is evaluated and tested for a selected area in Bonn, Germany. A new reliability factor is introduced that gives direct feedback about the quality of the generated path. Similar factor estimations can also be utilized for multiple route planning applications where VGI or other commercial or administrative data is implemented and more detailed factors than a simple geometric representation of a street network are of importance.

Collaboration


Dive into the Pascal Neis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Over

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge