Pascal Tarits
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal Tarits.
Earth and Planetary Science Letters | 1992
Pierre Henry; Jean-Paul Foucher; Xavier Le Pichon; Myriam Sibuet; Kazuo Kobayashi; Pascal Tarits; Nicolas Chamot-Rooke; Toshio Furuta; Peter Schultheiss
During the Kaiko-Nankai detailed submersible survey, numerous measurements of the temperature gradient inside the sediment were performed on the deepest active zone of fluid venting, which is situated on the anticline related to the frontal thrust, using the Ifremer T-Naut temperature probe operated from the submersibleNautile. We thus obtained the temperature structure below different types of clam colonies associated with fluid venting. We used the finite element method to model the thermal structure and fluid flow pattern of these vents and to determine the velocity of upward fluid flow through the colonies. On a biological basis, four types of clam colonies are defined. Each biological type has distinctive thermal characteristics and corresponds to a particular fluid flow pattern. Darcian flow velocity in the most active type of colony (type A) is of the order of 100 m/a. The total amount of fluid flowing through colonies in the studied area is estimated to be 200 m3 a−1 per metre width of subduction zone. Most of the flow is vented through type A colonies. This value is more than one order of magnitude too high to be compatible with the amount of water available from steady-state compaction of sediments in the whole wedge. Thermal arguments suggest that downwelling of seawater occurs around type A colonies and that seawater is then mixed with upcoming fluids at a depth of 1 or 2 metres. Furthermore, finite element modeling shows that a salinity difference of a few parts per mil between the upcoming fluids and seawater is sufficient to drive convection around the colonies. As water samples from a few vents indicate that the fluid source should actually be significantly less saline than seawater, we propose that the very high fluid flows measured are a consequence of the dilution of the fluid of deep origin with seawater by a factor of 5 to 10.
Journal of Geophysical Research | 1998
Rita Nolasco; Pascal Tarits; Jean H. Filloux; Alan D. Chave
In April-June 1989, seafloor magnetotelluric data across and along the leading edge of the Tahiti hotspot were obtained. The magnetotelluric response functions were found to be strongly influenced by bathymetric and island effects, and a new procedure for modeling and removing this distortion using a thin sheet approach combined with the measured water depths is introduced. The corrected response functions are consistent with a two-dimensional structure. Inversion of the data shows a slightly higher conductivity (relative to a reference site located away from the hotspot) down to 130 km depth beneath the active area southeast of Tahiti underlain by a more resistive structure. There is a suggestion for a change in conductivity in the 400–450 km depth range, which is consistent with elevated temperatures. This result is consistent with a mantle plume of limited extent (less than 150 km radius) located near the leading edge of the Tahiti hotspot. The magnetotelluric data provide no evidence for lithospheric thinning or for a strong thermal influence over a large area, as would be required by a superswell model.
Geophysical Research Letters | 1998
Frédéric Perrier; Michaël Trique; Benoit Lorne; Jean-Philippe Avouac; Sophie Hautot; Pascal Tarits
Electric potential variations have been recorded from November 1995 to February 1996 and continuously since October 1996 at 14 measurement points on a one km wide ridge separating two lakes in the French Alps. The levels of the lakes vary by several tens of meters on a yearly cycle, inducing stress variations and fluid percolation. At one point, unambiguous variations as large as 120 mV are observed over a year, linearly correlated with the levels of the lakes with a magnitude of 2 mV per meter of water level change. This particular measurement point lies at the edge of a SP anomaly, which supports the presence of a localized zone of ground water flow forced by the lake level, suggesting an electrokinetic mechanism. The observed correlation implies a ζ‐potential of the order of ‐8 mV for a 60 Ωm electrolyte, in agreement with laboratory measurements.
Journal of Geophysical Research | 2000
Sophie Hautot; Pascal Tarits; Kathy Whaler; Bernard Le Gall; Jean-Jacques Tiercelin; Caroline Le Turdu
Three-dimensional modeling of data from 31 vertical electrical and 24 magnetotelluric soundings collected in the Baringo-Bogoria Basin (central Kenya Rift Valley) shows a thick succession of well-defined tectonostratigraphic units beneath the Recent deposits of the Marigat-Loboi Plain. They include from top to bottom, a sedimentary basin, ∼1.5 km thick, controlled by N-S and N140° structural trends, and a thick homogeneous resistive layer related to the bottom of the basin, overlying a conductive structure, which cannot be clearly correlated with the Proterozoic basement. It is suggested that the resistive layer correlates with the mid-Miocene plateau-type flood phonolites which flowed over the early Kenya Rift during a major volcanic activity period. The conductive structure overlain by these lava flows could be a sedimentary basin developed during the initial phase of rifting, during the Oligocene-Miocene. The absence of a significant gravity low associated with this deep basin suggests a zone of dense intrusion deeper than 5–10 km, not discernible with the magnetotelluric data but required to explain the gravity anomalies. The recognition of a deeply buried sedimentary succession lying between 4 and 8 km beneath the lower Miocene volcanic series of the Baringo valley would provide new insights into the regional volcano-sedimentary stratigraphie succession and the rift development of the Kerio and Baringo Basins.
Geochemistry Geophysics Geosystems | 2014
Emmanuel Gardés; Fabrice Gaillard; Pascal Tarits
It has long been proposed that water incorporation in olivine has dramatic effects on the upper mantle properties, affecting large scale geodynamics and triggering high electrical conductivity. But the laboratory-based laws of olivine electrical conductivity predict contrasting effects of water, precluding the interpretation of geophysical data in term of mantle hydration. We review the experimental measurements of hydrous olivine conductivity and conclude that most of data are consistent when errors in samples water contents are considered. We report a new law calibrated on the largest database of measurements on hydrous olivine oriented single crystals and polycrystals. It fits most of measurements within uncertainties, and is compatible with most of geophysical data within petrological constraints on mantle olivine hydration. The isotropic conductivity (S/m) is where CH2O is the water concentration in olivine (wt.ppm) and T the temperature (K). The conductivity anisotropy of hydrous olivine might be higher than dry olivine, but preferential orientation should produce moderate anisotropy (~0–0.8 log unit). In the oceanic mantle, the enhancement of olivine conductivity is limited to ~1 log unit in the maximum range of mantle olivine water concentrations (0–500 wt.ppm). Strongest enhancements are expected in colder regions, like cratonic lithospheres and subduction settings. High conductivities in melt-free mantle require great depths and high water concentrations in olivine (>0.1 S/m at >250 km and >200 wt.ppm). Thus, the hydration of olivine appears unlikely to produce the highest conductivities of the upper mantle.
Earth, Planets and Space | 1998
Barbara Romanowicz; Debra S. Stakes; Jean P. Montagner; Pascal Tarits; Michael L. Begnaud; Eleonore Stutzmann; Michael E. Pasyanos; J.-F. Karczewski; Steven Etchemendy; D. S. Neuhauser
We describe the scientific purposes and experimental set-up of an international deployment of a 3 component broadband seismometer package on the ocean floor in Monterey Bay which took place during the summer of 1997. Highlights of this experiment were the installation, performed using a remotely operated vehicle (ROV), the underwater connection of the different components of the package, and the successful retrieval of 3 months of broadband seismic and auxiliary data. Examples of recordings of teleseisms and regional earthquakes are presented and the background noise characteristics are discussed, in comparison with those of near-by broadband land sites, current-meter data from the vicinity of the ocean bottom package, as well as pressure data from deeper ocean sites.
Journal of Geophysical Research | 2009
Olivier Verhoeven; Antoine Mocquet; Pierre Vacher; Attilio Rivoldini; Michel Menvielle; P.-A. Arrial; G. Choblet; Pascal Tarits; Véronique Dehant; T. Van Hoolst
Despite the tight constraints put by seismology on the elastic properties of the Earths lower mantle, its mineralogical composition and thermal state remain poorly known because the interpretation of seismic measurements suffers from the trade-off between temperature, iron content, and mineralogical composition. In order to overcome this difficulty, we complement seismic data with electromagnetic induction data. The latter data are mostly sensitive to temperature and iron content, while densities and acoustic speeds mostly constrain the mineralogy. A 0.5 log unit increase in electrical conductivity can be caused either by a 400 K increase of the temperature or by an increase of iron content from 10% to 12.5%. Acoustic velocity is only marginally sensitive to temperature but it increases by 0.8 km s−1 on average as the perovskite fraction increases from 50% to 100%. Olsens (1999) apparent resistivities in the period range [15 days, 11 years], and Preliminary reference Earth model (PREM) densities and acoustic speeds are jointly inverted in the depth range [800 km, 2600 km] by using a Monte Carlo Markov Chain method. Given the uncertainties on these data, estimates of perovskite fraction are well constrained over the whole depth range, but information on temperature and iron content is only obtained for depths less than 2000 km, corresponding to the penetration depth of the long-period electromagnetic field. All parameter values are determined with an uncertainty better than 15–20% at the 1σ confidence level. The temperature in the uppermost lower mantle (i.e., down to 1300 km depth) is close to a value of 2200 K and increases along a superadiabatic gradient of 0.4 K km−1 between 1300 and 2000 km depth. Extrapolation of this gradient at greater depth leads to a temperature close to 2800 K at 2600 km depth. The iron content of the lower mantle is found to be almost constant and equal to 10–11% whatever the depth, while a significant linear decrease of the perovskite content is observed throughout the whole depth range, from 80% at 800 km depth down to ∼65% at 2600 km depth.
Geophysics | 2002
Sophie Hautot; Pascal Tarits; Frédéric Perrier; Corinne Tarits; Michaël Trique
Very‐low‐frequency (VLF), audiomagnetotelluric (AMT), and water geochemistry surveys were performed on the Sur‐Fretes Ridge in the French Alps to evaluate the groundwater circulation system within the ridge. At this site, temporal variations of the electric field have been observed in association with water‐level variations of neighboring artificial lakes. The Sur‐Fretes Ridge is 1 km wide and trends east–west. Water samples were collected at 52 points distributed throughout the area. VLF soundings were carried out along three parallel east–west profiles, and 7 AMT soundings were carried out along an east–west profile on the top of the ridge. This site is characterized by a rugged topography of the ridge where geological and topographic trends are almost perpendicular, making the structure fully three dimensional. We constructed a 2‐D resistivity model of the ridge from 2‐D and 3‐D analyses of the VLF and AMT data, associating geology and topography models. When combined with the water chemistry data, a m...
Earth and Planetary Science Letters | 1992
Nicolas Chamot-Rooke; Siegfried Lallemant; X. Le Pichon; Paul Henry; Myriam Sibuet; Jacques Boulègue; Jean-Paul Foucher; Toshio Furuta; Toshitaka Gamo; G. Glaçon; Kyoko Kobayashi; S. Kuramoto; Yusuke Ogawa; Peter Schultheiss; Jiro Segawa; Akira Takeuchi; Pascal Tarits; Hidekazu Tokuyama
During the Kaiko-Nankai diving cruise the peak of the venting activity was located near the top of the very first anticline. The most prominent morphological feature between the mid-slope (3870 m) and the apex of the fold (3770 m) is a 20 m high cliff cutting through subhorizontal massive mudstones affected by numerous joints. The trend of this scarp is oblique to the fold axis and structurally controlled along two sharply defined NNE-SSE and E-W directions. Fresh talus and blocks found locally suggest active tectonics and recent erosion. Intense deformation is evident from strongly tilted strata restricted to the base of the cliff that we interpret as an upslope thrust. At the scale of Seabeam mapping, this thrust can be followed eastward for more than 5 km along the 3820 m isobath. Two seismic lines recorded during one of the pre-site surveys show deformation at shallow depth, including small-scale folding and thrusting affecting only the wedge-shaped top sequence. Deeper layers can be traced continuously below this sequence. We conclude that the boundary between the “piggy-back” basin and the frontal fold turbidites acts as a shallow detachment fault, and interpret the base of the cliff as the outcrop of the fault. Dense colonies ofCalyptogena clams and strongly nonlinear thermal gradients locate the major peak of fluid activity at the edge of the plateau above the main cliff. Scattered biological colonies as well as white bacterial mats and cemented chimneys were also found in a narrow belt along the base of the cliff. Fluid activity is thus closely related to the shallow detachment fault, fluid being expelled both at the outcrop of the fault and above it through the overlying strata, possibly using the very dense joint network.
Earth, Planets and Space | 2012
Daisuke Suetsugu; Hajime Shiobara; Hiroko Sugioka; Aki Ito; Takehi Isse; Takafumi Kasaya; Noriko Tada; Kiyoshi Baba; Natsue Abe; Yozo Hamano; Pascal Tarits; Jean-Pierre Barriot; D. Reymond
We conducted geophysical observations on the French Polynesian seafloor in the Pacific Ocean from 2009 to 2010 to determine the mantle structure beneath the Society hotspot, which is a region of underlying volcanic activity responsible for forming the Society Islands. The network for Tomographic Investigation by seafloor ARray Experiment for the Society hotspot (TIARES, named after the most common flower in Tahiti) is composed of multi-sensor stations that include broadband ocean-bottom seismometers, ocean-bottom electro-magnetometers, and differential pressure gauges. The network is designed to obtain seismic and electrical conductivity structures of the mantle beneath the Society hotspot. In addition to providing data to study the mantle structure, the TIARES network recorded unprecedented data of pressure and electromagnetic (EM) signals by tsunamis associated with large earthquakes in the Pacific Ocean, including the 2010 Chilean earthquake (Mw 8.8).