Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Xavier is active.

Publication


Featured researches published by Pascal Xavier.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

First light results from the High Efficiency and Resolution Multi-Element Spectrograph at the Anglo-Australian Telescope

Andrew Sheinis; Borja Anguiano Jimenez; Martin Asplund; Carlos Bacigalupo; Samuel C. Barden; Michael N. Birchall; Joss Bland-Hawthorn; Jurek Brzeski; Russell D. Cannon; Daniela Carollo; Scott W. Case; Andrew R. Casey; Vladimir Churilov; Warrick J. Couch; Robert Dean; Gayandhi De Silva; V. D’Orazi; Ly Duong; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Gabriella Frost; Luke Gers; Michael Goodwin; Doug Gray; Andrew W. Green; Ron Heald; Jeroen Heijmans; Michael J. Ireland; Damien Jones

Abstract. The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.


Proceedings of SPIE | 2012

The AAO's Gemini High-Resolution Optical SpecTrograph (GHOST) concept

Michael J. Ireland; Stuart I. Barnes; David Cochrane; Matthew Colless; Peter Connor; Anthony Horton; Steve Gibson; Jon Lawrence; Sarah L. Martell; Peter J. McGregor; Tom Nicolle; Kathryn Nield; David Orr; J. Gordon Robertson; Stuart D. Ryder; Andrew Sheinis; Greg Smith; Nick Staszak; Julia Tims; Pascal Xavier; Peter C. Young; Jessica Zheng

The Gemini High-Resolution Optical SpecTrograph (GHOST) will fill an important gap in the current suite of Gemini instruments. We will describe the Australian Astronomical Observatory (AAO)-led concept for GHOST, which consists of a multi-object, compact, high-efficiency, fixed-format, fiber-fed design. The spectrograph itself is a four-arm variant of the asymmetric white-pupil echelle Kiwispec spectrograph, Kiwisped, produced by Industrial Research Ltd. This spectrograph has an R4 grating and a 100mm pupil, and separate cross-disperser and camera optics for each of the four arms, carefully optimized for their respective wavelength ranges. We feed this spectrograph with a miniature lensletbased IFU that sub-samples the seeing disk of a single object into 7 hexagonal sub-images, reformatting this into a slit with a second set of double microlenses at the spectrograph entrance with relatively little loss due to focal-ratio degradation. This reformatting enables high spectral resolution from a compact design that fits well within the relatively tight GHOST budget. We will describe our baseline 2-object R~50,000 design with full wavelength coverage from the ultraviolet to the silicon cutoff, as well as the high-resolution single-object R~75,000 mode.


Proceedings of SPIE | 2012

GNOSIS: A novel near-infrared OH suppression unit at the AAT

Christopher Trinh; Simon C. Ellis; Jon Lawrence; Anthony Horton; Joss Bland-Hawthorn; Sergio G. Leon-Saval; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; Hans-Gerd Löhmannsröben; Stan Miziarski; John W. O'Byrne; William Rambold; Martin M. Roth; Brian Paul Schmidt; Keith Shortridge; Scott Smedley; C. G. Tinney; Pascal Xavier; Jessica Zheng

GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free spectra.


Proceedings of SPIE | 2012

Integrating the HERMES spectrograph for the AAT

Jeroen Heijmans; Martin Asplund; Sam Barden; Michael N. Birchall; Daniela Carollo; Joss Bland-Hawthorn; Jurek Brzeski; Scott W. Case; Vladimir Churilov; Matthew Colless; Robert Dean; Gayandhi De Silva; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Luke Gers; Michael Goodwin; Doug Gray; Ron Heald; Anthony Heng; Damien Jones; Chiaki Kobayashi; Urs Klauser; Yuriy Kondrat; Jon Lawrence; Steve Lee; Darren Mathews; Stan Miziarski; Guy Monnet; Rolf Müller

The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES spectrograph is given. This paper details the following specific topics: The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and software, data reduction.


Proceedings of SPIE | 2014

PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

Joss Bland-Hawthorn; Simon C. Ellis; Luke Gers; Roger Haynes; Anthony Horton; Jon Lawrence; Sergio G. Leon-Saval; Emma Lindley; Seong-sik Min; Keith Shortridge; Nick Staszak; Christopher Trinh; Pascal Xavier; Ross Zhelem

PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH suppression to be deployed on a telescope. The Bragg gratings reflect the NIR OH lines while being transparent to the light between the lines. This gives in principle a much higher signal-noise ratio at low resolution spectroscopy but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited even with the low sky background levels remaining after OH suppression. The optical and mechanical designs are presented. The optical train starts with fore-optics that image the telescope focal plane on an IFU which has 19 hexagonal microlenses each feeding a multi-mode fibre. Seven of these fibres are attached to a fibre Bragg grating OH suppression system while the others are reference/acquisition fibres. The light from each of the seven OH suppression fibres is then split by a photonic lantern into many single mode fibres where the Bragg gratings are imprinted. Another lantern recombines the light from the single mode fibres into a multi-mode fibre. A trade-off was made in the design of the IFU between field of view and transmission to maximize the signal-noise ratio for observations of faint, compact objects under typical seeing. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1.47 μm to 1.7 μm (it can also be used in the 1.09 μm to 1.26 μm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and optimized for our small bandwidth, and low absorption glasses. The detector noise will also be lower thanks to the use of a current generation HAWAII-2RG detector. Throughout the PRAXIS design, from the fore-optics to the detector enclosure, special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. The spectrograph design itself was particularly challenging in this aspect because practical constraints required that the detector and the spectrograph enclosures be physically separate with air at ambient temperature between them. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow an increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.


Ground-based and Airborne Instrumentation for Astronomy VII | 2018

PRAXIS: an OH suppression optimised near infrared spectrograph

Simon C. Ellis; Svend-Marian Bauer; Joss Bland-Hawthorn; Scott W. Case; Thomas Fechner; Domenico Giannone; Roger Haynes; Eloy Hernandez; Anthony Horton; Urs Klauser; Jonathan Lawrence; Seong-sik Min; Naveen Pai; M. Roth; Pascal Xavier; Ross Zhelem; Hans-Gerd Löhmannsröben; Carlos Bacigalupo; Julia J. Bryant; Sergio G. Leon-Saval; Emma Lindley; Lewis Waller; Keith Shortridge

The problem of atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph which is fed by fibres that remove the OH background and is optimised specifically to benefit from OH-Suppression. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS uses the same fibre Bragg gratings as GNOSIS in its first implementation, and will exploit new, cheaper and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of ∼ 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of ∼ 9 with the GNOSIS gratings and a factor of ∼ 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS (a retrofit to an existing instrument that was not OH-Suppression optimised) due to high thermal emission, low spectrograph transmission and detector noise. PRAXIS has extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and the fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS has low detector noise through the use of a Hawaii-2RG detector, and a high throughput through a efficient VPH based spectrograph. PRAXIS will determine the absolute level of the interline continuum and enable observations of individual objects via an IFU. In this paper we give a status update and report on acceptance tests.


Proceedings of SPIE | 2016

ULTIMATE: a deployable multiple integral field unit for Subaru

Simon C. Ellis; Ross Zhelem; David M. Brown; Nicholas F. Staszak; C. Lidman; David M. Nataf; Andrew R. Casey; Pascal Xavier; Andrew Sheinis; Peter Gillingham; Julia Tims; Jon Lawrence; Julia J. Bryant; Rob Sharp

ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z ~ 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.


Proceedings of SPIE | 2016

PRAXIS: a near infrared spectrograph optimised for OH suppression

Simon C. Ellis; Svend-Marian Bauer; Joss Bland-Hawthorn; Scott W. Case; Thomas Fechner; Domenico Giannone; Roger Haynes; Eloy Hernandez; Anthony Horton; Urs Klauser; Jon Lawrence; Sergio G. Leon-Saval; Emma Lindley; Hans-Gerd Löhmannsröben; Seong-sik Min; Naveen Pai; M. Roth; Keith Shortridge; Nicholas F. Staszak; Julia Tims; Pascal Xavier; Ross Zhelem

Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of ~1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of ~ 9 with the GNOSIS gratings and a factor of ~ 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.


Proceedings of SPIE | 2014

KOALA, a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope: assembly and commissioning

Ross Zhelem; Jurek Brzeski; Scott W. Case; Vladimir Churilov; Simon C. Ellis; Tony Farrell; Andrew W. Green; Anthony Heng; Anthony Horton; Michael J. Ireland; Damien Jones; Urs Klauser; Jon Lawrence; Stan Miziarski; David Orr; Naveen Pai; Nick Staszak; Julia Tims; Minh Vuong; Lew Waller; Pascal Xavier

The KOALA optical fibre feed for the AAOmega spectrograph has been commissioned at the Anglo-Australian Telescope. The instrument samples the reimaged telescope focal plane at two scales: 1.23 arcsec and 0.70 arcsec per image slicing hexagonal lenslet over a 49x27 and 28x15 arcsec field of view respectively. The integral field unit consists of 2D hexagonal and circular lenslet arrays coupling light into 1000 fibres with 100 micron core diameter. The fibre run is over 35m long connecting the telescope Cassegrain focus with the bench mounted spectrograph room where all fibres are reformatted into a one-dimensional slit. Design and assembly of the KOALA components, engineering challenges encountered, and commissioning results are discussed.


australian conference on optical fibre technology | 2011

Atmospheric OH suppression with GNOSIS at the Anglo-Australian Telescope

Jon Lawrence; Simon C. Ellis; Joss Bland-Hawthorn; Julia J. Bryant; Scott W. Case; Luke Gers; Roger Haynes; Anthony Horton; Steve Lee; Sergio G. Leon-Saval; H. Loehmannsroeben; Stan Miziarski; John W. O'Byrne; William Rambold; Martin M. Roth; Keith Shortridge; Scott Smedley; Christopher Trinh; Pascal Xavier; Jessica Zheng

GNOSIS is an instrument currently being commissioned at the Anglo-Australian Telescope that is designed to suppress atmospheric OH emission using fibre Bragg gratings. Here we present an outline of the GNOSIS instrument and the first on-telescope results from this new technology concept.

Collaboration


Dive into the Pascal Xavier's collaboration.

Top Co-Authors

Avatar

Anthony Horton

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Jon Lawrence

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Simon C. Ellis

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Shortridge

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Luke Gers

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Ross Zhelem

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge