Pascale Andre
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascale Andre.
Journal of Virology | 2002
Pascale Andre; F. Komurian-Pradel; Séverine Deforges; Magali Perret; J. L. Berland; M. Sodoyer; Stanislas Pol; Christian Bréchot; G. Paranhos-Baccalà; Vincent Lotteau
ABSTRACT The presence of hepatitis C virus (HCV) RNA-containing particles in the low-density fractions of plasma has been associated with high infectivity. However, the nature of circulating HCV particles and their association with immunoglobulins or lipoproteins as well as the characterization of cell entry have all been subject to conflicting reports. For a better analysis of HCV RNA-containing particles, we quantified HCV RNA in the low-density fractions of plasma corresponding to the very-low-density lipoprotein (VLDL), intermediate-density lipoprotein, and low-density lipoprotein (LDL) fractions from untreated chronically HCV-infected patients. HCV RNA was always found in at least one of these fractions and represented 8 to 95% of the total plasma HCV RNA. Surprisingly, immunoglobulins G and M were also found in the low-density fractions and could be used to purify the HCV RNA-containing particles (lipo-viro-particles [LVP]). Purified LVP were rich in triglycerides; contained at least apolipoprotein B, HCV RNA, and core protein; and appeared as large spherical particles with a diameter of more than 100 nm and with internal structures. Delipidation of these particles resulted in capsid-like structures recognized by anti-HCV core protein antibody. Purified LVP efficiently bind and enter hepatocyte cell lines, while serum or whole-density fractions do not. Binding of these particles was competed out by VLDL and LDL from noninfected donors and was blocked by anti-apolipoprotein B and E antibodies, whereas upregulation of the LDL receptor increased their internalization. These results suggest that the infectivity of LVP is mediated by endogenous proteins rather than by viral components providing a mechanism of escape from the humoral immune response.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Thierry Walzer; Mathieu Blery; Julie Chaix; Nicolas Fuseri; Lionel Chasson; Scott H. Robbins; Sébastien Jaeger; Pascale Andre; Laurent Gauthier; Laurent Daniel; Karine Chemin; Yannis Morel; Marc Dalod; Jean Imbert; Michel Pierres; Alessandro Moretta; Francois Romagne; Eric Vivier
Natural killer (NK) cells contribute to a variety of innate immune responses to viruses, tumors and allogeneic cells. However, our understanding of NK cell biology is severely limited by the lack of consensus phenotypic definition of these cells across species, by the lack of specific marker to visualize them in situ, and by the lack of a genetic model where NK cells may be selectively ablated. NKp46/CD335 is an Ig-like superfamily cell surface receptor involved in human NK cell activation. In addition to human, we show here that NKp46 is expressed by NK cells in all mouse strains analyzed, as well as in three common monkey species, prompting a unifying phenotypic definition of NK cells across species based on NKp46 cell surface expression. Mouse NKp46 triggers NK cell effector function and allows the detection of NK cells in situ. NKp46 expression parallels cell engagement into NK differentiation programs because it is detected on all NK cells from the immature CD122+NK1.1+DX5− stage and on a minute fraction of NK-like T cells, but not on CD1d-restricted NKT cells. Moreover, human NKp46 promoter drives NK cell selective expression both in vitro and in vivo. Using NKp46 promoter, we generated transgenic mice expressing EGFP and the diphtheria toxin (DT) receptor in NK cells. DT injection in these mice leads to a complete and selective NK cell ablation. This model paves a way for the in vivo characterization and preclinical assessment of NK cell biological function.
Journal of Clinical Investigation | 2011
Emilie Mamessier; Aude Sylvain; Marie-Laure Thibult; Gilles Houvenaeghel; Jocelyne Jacquemier; Rémy Castellano; Anthony Gonçalves; Pascale Andre; Francois Romagne; Gilles Thibault; Patrice Viens; Daniel Birnbaum; François Bertucci; Alessandro Moretta; Daniel Olive
NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-β1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity.
Blood | 2009
Francois Romagne; Pascale Andre; Pieter Spee; Stefan Zahn; Nicolas Anfossi; Laurent Gauthier; Marusca Capanni; Loredana Ruggeri; Don M. Benson; Bradley W. Blaser; Mariella Della Chiesa; Alessandro Moretta; Eric Vivier; Michael A. Caligiuri; Andrea Velardi; Nicolai Wagtmann
Inhibitory-cell killer immunoglobulin-like receptors (KIR) negatively regulate natural killer (NK) cell-mediated killing of HLA class I-expressing tumors. Lack of KIR-HLA class I interactions has been associated with potent NK-mediated antitumor efficacy and increased survival in acute myeloid leukemia (AML) patients upon haploidentical stem cell transplantation from KIR-mismatched donors. To exploit this pathway pharmacologically, we generated a fully human monoclonal antibody, 1-7F9, which cross-reacts with KIR2DL1, -2, and -3 receptors, and prevents their inhibitory signaling. The 1-7F9 monoclonal antibody augmented NK cell-mediated lysis of HLA-C-expressing tumor cells, including autologous AML blasts, but did not induce killing of normal peripheral blood mononuclear cells, suggesting a therapeutic window for preferential enhancement of NK-cell cytotoxicity against malignant target cells. Administration of 1-7F9 to KIR2DL3-transgenic mice resulted in dose-dependent rejection of HLA-Cw3-positive target cells. In an immunodeficient mouse model in which inoculation of human NK cells alone was unable to protect against lethal, autologous AML, preadministration of 1-7F9 resulted in long-term survival. These data show that 1-7F9 confers specific, stable blockade of KIR, boosting NK-mediated killing of HLA-matched AML blasts in vitro and in vivo, providing a preclinical basis for initiating phase 1 clinical trials with this candidate therapeutic antibody.
Blood | 2012
Norbert Vey; Jean-Henri Bourhis; Nicolas Boissel; Dominique Bordessoule; Thomas Prebet; Aude Charbonnier; Anne Etienne; Pascale Andre; Francois Romagne; Don M. Benson; Hervé Dombret; Daniel Olive
IPH2101 is an anti-killer inhibitory receptor (anti-KIR) mAb that can block KIR-mediated inhibition of natural killer (NK) cells to enhance cytotoxicity against acute myeloid leukemia blasts. We have conducted a phase 1 study of IPH2101 in elderly patients with acute myeloid leukemia in first complete remission. Patients received escalating doses (0.0003-3 mg/kg) of IPH2101 following a 3 + 3 design. Safety, toxicity (primary end points), pharmacokinetics, outcome, and immunologic correlates were evaluated. Twenty-three patients (median age, 71 years), were enrolled. Adverse events were mild and transient, consisting mainly of infusion syndrome and erythema. The maximum tolerated dose was not reached, although full KIR saturation (> 90%) was sustained for more than 2 weeks at 1 and 3 mg/kg. There was a clear correlation between mAb exposure and KIR occupancy. Neither hematologic toxicity nor significant changes in the numbers and distribution of lymphocyte subsets, NK cell receptor expression, or in vitro cytotoxicity were seen. At the highest dose levels (0.3, 1, and 3 mg/kg), transient increases in TNF-α and MIP-1β serum concentrations and NK cell CD69 expression were observed. Overall and relapse-free survival in the present study compared favorably to reports in comparable patient populations. We conclude that IPH2101 administration is safe and can block KIR for prolonged periods of time with limited side effects. Registered with the European Union Drug Regulating Authorities Clinical Trials (EUDRACT) as 2005-005298-31.
European Journal of Immunology | 2004
Pascale Andre; Roberta Castriconi; Marion Espéli; Nicolas Anfossi; Tiffany Juarez; Sophie Hue; Holli Conway; Francois Romagne; Alessandra Dondero; Marina Nanni; Sophie Caillat-Zucman; David H. Raulet; Cristina Bottino; Eric Vivier; Alessandro Moretta; Pascale Paul
NKG2D and natural cytotoxicity receptors (NCR) are essential recognition structures that mediate NK cell activation. NKG2D and NCR signaling is achieved through membrane association with signaling adaptors. The adaptors that associate with NCR — such as CD3ζ, FcRγ and KARAP/DAP12 — bear intracytoplasmic immunoreceptor tyrosine‐based activation motifs that activate Syk protein tyrosine kinases. Human NKG2D associates with the DAP10 transmembrane adaptor, which bears a YxxM motif and activates the phosphatidylinositol 3‐kinase pathway. In the mouse, a short NKG2D‐S isoform, generated by Nkg2d alternative splicing, can associate with either DAP10 or KARAP/DAP12. Here, we report that neither short human NKG2D alternative transcripts nor NKG2D association with KARAP/DAP12 was detected in activated human NK cells. Despite these results, NK cell triggering by both recombinant soluble NKG2D ligands (MICA and ULBP‐1) and anti‐NCR cross‐linking antibodies inducedsimilar CD25 expression, NK cell proliferation and cytokine production. In contrast, NKG2D triggering by anti‐NKG2D antibodies did not lead to any detectable activation signals. These data thus show that target recognition via NKG2D or NCR triggers all aspects of NK activation, and pave the way for further dissection of the signaling pathways induced by NK cell recognition of ULBP‐1 and MICA.
Blood | 2014
Holbrook Kohrt; Ariane Thielens; Aurélien Marabelle; Idit Sagiv-Barfi; Caroline Sola; Fabien Chanuc; Nicolas Fuseri; Cécile Bonnafous; Debra K. Czerwinski; Amanda Rajapaksa; Erin Waller; Sophie Ugolini; Eric Vivier; Francois Romagne; Ronald Levy; Mathieu Blery; Pascale Andre
Natural killer (NK) cells mediate antilymphoma activity by spontaneous cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) when triggered by rituximab, an anti-CD20 monoclonal antibody (mAb) used to treat patients with B-cell lymphomas. The balance of inhibitory and activating signals determines the magnitude of the efficacy of NK cells by spontaneous cytotoxicity. Here, using a killer-cell immunoglobulin-like receptor (KIR) transgenic murine model, we show that blockade of the interface of inhibitory KIRs with major histocompatibility complex (MHC) class I antigens on lymphoma cells by anti-KIR antibodies prevents a tolerogenic interaction and augments NK-cell spontaneous cytotoxicity. In combination with anti-CD20 mAbs, anti-KIR treatment induces enhanced NK-cell-mediated, rituximab-dependent cytotoxicity against lymphoma in vitro and in vivo in KIR transgenic and syngeneic murine lymphoma models. These results support a therapeutic strategy of combination rituximab and KIR blockade through lirilumab, illustrating the potential efficacy of combining a tumor-targeting therapy with an NK-cell agonist, thus stimulating the postrituximab antilymphoma immune response.
Blood | 2012
Don M. Benson; Craig C. Hofmeister; Swaminathan Padmanabhan; Attaya Suvannasankha; Sundar Jagannath; Rafat Abonour; Courtney E. Bakan; Pascale Andre; Yvonne A. Efebera; Jerome Tiollier; Michael A. Caligiuri; Sherif S. Farag
Natural killer (NK) cells elicit cytotoxicity against multiple myeloma (MM); however, MM cells express HLA class I molecules as ligands to NK cell inhibitory killer immunoglobulin-like receptors (KIRs) as a means of immunoevasion. KIR-ligand mismatch may improve outcomes in allogeneic transplantation for MM. Extrapolating on this concept, we conducted a phase 1 trial of IPH2101, an anti-KIR antibody, in patients with relapsed/refractory MM. IPH2101 was administered intravenously every 28 days in 7 dose-escalated cohorts (0.0003-3 mg/kg) for up to 4 cycles. Pharmacokinetic, pharmacodynamic, and correlative immunologic studies were completed. A total of 32 patients were enrolled. The biologic endpoint of full KIR2D occupancy across the dosing cycle was achieved without dose-limiting toxicity or maximally tolerated dose. One severe adverse event was noted. Pharmacokinetic and pharmacodynamic findings approximated preclinical predictions, and IPH2101 enhanced ex vivo patient-derived NK cell cytotoxicity against MM. No objective responses were seen. No evidence of autoimmunity was observed. These findings suggest that IPH2101 is safe and tolerable at doses that achieve full inhibitory KIR saturation, and this approach warrants further development in MM. This trial was registered at www.clinicaltrials.gov as #NCT00552396.
Blood | 2011
Don M. Benson; Courtney E. Bakan; Shuhong Zhang; Shauna M. Collins; Jing Liang; Shivani Srivastava; Craig C. Hofmeister; Yvonne A. Efebera; Pascale Andre; Francois Romagne; Mathieu Blery; Cécile Bonnafous; Jianying Zhang; David Clever; Michael A. Caligiuri; Sherif S. Farag
Multiple myeloma (MM) patients who receive killer cell Ig-like receptor (KIR) ligand-mismatched, T cell-depleted, allogeneic transplantation may have a reduced risk of relapse compared with patients who receive KIR ligand-matched grafts, suggesting the importance of this signaling axis in the natural killer (NK) cell-versus-MM effect. Expanding on this concept, IPH2101 (1-7F9), an anti-inhibitory KIR mAb, enhances NK-cell function against autologous MM cells by blocking the engagement of inhibitory KIR with cognate ligands, promoting immune complex formation and NK-cell cytotoxicity specifically against MM cell targets but not normal cells. IPH2101 prevents negative regulatory signals by inhibitory KIR, whereas lenalidomide augments NK-cell function and also appears to up-regulate ligands for activating NK-cell receptors on MM cells. Lenalidomide and a murine anti-inhibitory NK-cell receptor Ab mediate in vivo rejection of a lenalidomide-resistant tumor. These mechanistic, preclinical data support the use of a combination of IPH2101 and lenalidomide in a phase 2 trial for MM.
European Journal of Immunology | 2000
Elena Tomasello; Charles Cant; Hans-Jörg Bühring; Fréd´eric Vély; Pascale Andre; Martine Seiffert; Axel Ullrich; Eric Vivier
The signal‐regulatory proteins (SIRP) are Ig‐like cell surface receptors detected in hematopoietic and non‐hematopoietic cells. SIRP are classified as SIRPα molecules, containing a 110‐ to 113‐amino acid long, or SIRPβ molecules, with a 5‐amino acid long intracytoplasmic domain. SIRPα molecules belong to inhibitory immunoreceptor tyrosine‐based inhibition motif (ITIM)‐bearing molecules. The majority of ITIM‐bearing receptors are paired with activating isoforms, which share highly related extracytoplasmic domains but harbor a shorter cytoplasmic domain devoid of ITIM and contain a charged amino acid residue in their transmembrane domain. Activating receptors are associated with immunoreceptor tyrosine‐based activation motif (ITAM)‐bearing proteins, such as KARAP/DAP‐12 and FcRγ. In this report, we show that human SIRPβ1 is included in an oligomeric complex with KARAP/DAP‐12 in hematopoietic and non‐hematopoietic transfectant cells as well as in human monocytes. The physical association between SIRPβ1 and KARAP/DAP‐12 results in the functional coupling of SIRPβ1 engagement to the recruitment of the protein tyrosine kinase Syk and to serotonin release in RBL cell transfectants. Therefore our results show that SIRPβ1 acts as an activating isoform of SIRPα molecules, confirming the co‐existence of inhibitory ITIM‐bearing molecules, recruiting SHP‐1 and SHP‐2 protein tyrosine phosphatases, and activating counterparts, whose engagement couples to protein tyrosine kinases via ITAM‐bearing molecules.