Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascale Ehrenfreund is active.

Publication


Featured researches published by Pascale Ehrenfreund.


International Journal of Astrobiology | 2011

Astrobiology and habitability studies in preparation for future Mars missions: Trends from investigating minerals, organics and biota

Pascale Ehrenfreund; Wilfred F.M. Röling; Cora S. Thiel; Richard C. Quinn; Mark A. Sephton; Carol R. Stoker; J. M. Kotler; S. Direito; Zita Martins; G. Orzechowska; R. D. Kidd; C.A. van Sluis; Bernard H. Foing

Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expected life detection targets. We have characterized the mineralogy, organic chemistry and microbiology of ten selected sample sites from the Utah desert in close vicinity to the Mars Desert Research Station (MDRS) during the EuroGeoMars 2009 campaign (organized by International Lunar ExplorationWorking Group (ILEWG), NASA Ames and ESA ESTEC). Compared with extremely arid deserts (such as the Atacama), organic and biological materials can be identified in a larger number of samples and subsequently be used to perform correlation studies. Among the important findings of this field research campaign are the diversity in the mineralogical composition of soil samples even when collected in close proximity, the low abundances of detectable polycyclic aromatic hydrocarbons (PAHs) and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles, mainly Bacteria and also Archaea and Eukarya was observed. The dominant factor in measurable bacterial abundance seems to be soil porosity and lower small (clay-sized) particle content. However, correlations between many measured parameters are difficult to establish. Field research conducted during the EuroGeoMars 2009 campaign shows that the geological history and depositional environment of the region, as well as the mineralogy influence the ability to detect compounds such as amino acids and DNA. Clays are known to strongly absorb and bind organic molecules often preventing extraction by even sophisticated laboratory methods. Our results indicate the need for further development and optimization of extraction procedures that release biological compounds from host matrices to enable the effective detection of biomarkers during future sampling campaigns on Earth and Mars.


International Journal of Astrobiology | 2011

Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah

Zita Martins; Mark A. Sephton; Bernard H. Foing; Pascale Ehrenfreund

Future space missions that aim to detect life should search for molecules that are vital to all living organisms. Although the Viking landers did not find any signs of organic molecules on Mars, signatures of past and/or present life may still exist in the Martian regolith. In this paper, we describe amino acid analyses performed in several Martian analogue soil samples collected close to the Mars Desert Research Station (MDRS), Utah, during the International Lunar Exploration Working Group (ILEWG) EuroGeoMars campaign in February 2009. The Utah desert around Hanksville is characterized as shale desert and is cold and arid with an average annual temperature of 12°C. It is subjected to wind erosion and was shaped by fluvial erosion. The data show large differences in the total amino acid abundances between all the collected soil samples, with values ranging from non-detectable to 100 000 parts per billion (ppb). These results are explained in the context of mineralogical differences (namely different clay content) among the soil samples. The data have implications for future life-detection missions and the target mineralogy that may host biological signatures.


International Journal of Astrobiology | 2011

Field astrobiology research in Moon–Mars analogue environments: instruments and methods

Bernard H. Foing; Carol R. Stoker; Jhony Zavaleta; Pascale Ehrenfreund; C.S. Thiel; P. Sarrazin; D. Blake; J. Page; Vladimir Pletser; J. Hendrikse; S. Direito; J. M. Kotler; Zita Martins; G. Orzechowska; C. Gross; Lorenz Wendt; J. Clarke; A. M. Borst; S. T. M. Peters; M. B. Wilhelm; G. R. Davies; Ilewg EuroGeoMars Team

We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discussthe entire experimental approach fromdetermining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measure- ments as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements fromselected samplingsites. Wediscuss in sequence: the campaign objectivesand trade-off based on science, technicaloroperationalconstraints.Thisincludes remotesensingdataandmaps, andgeologicalcontext; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).


International Journal of Astrobiology | 2011

Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

G. Orzechowska; R. D. Kidd; Bernard H. Foing; I. Kanik; Carol R. Stoker; Pascale Ehrenfreund

Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g �1 . The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.


International Journal of Astrobiology | 2011

Astrobiology field research in Moon/Mars analogue environments

Bernard H. Foing; Carol R. Stoker; Pascale Ehrenfreund

Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.


International Journal of Astrobiology | 2002

Investigating complex organic compounds in a simulated Mars environment

I.L. ten Kate; Richard Ruiterkamp; Oliver Botta; Benny Lehmann; C. Gomez Hernandez; Nathalie Boudin; Bernard H. Foing; Pascale Ehrenfreund

The search for organic molecules and traces of life on Mars has been a major topic in planetary science for several decades. 26 years ago Viking, a mission dedicated to the search for life on Mars, detected no traces of life. The search for extinct or extant life on Mars is the future perspective of several missions to the red planet, for example Beagle 2, the lander of the Mars Express mission. In order to determine what those missions should be looking for, laboratory experiments under simulated Mars conditions are crucial. This review paper describes ongoing experiments that are being performed in support of future Mars spacecraft missions. Besides the description of the experiments, the experimental hardware and set-up, this paper also gives the scientific rationale behind those experiments. The historical background of the search for life on Mars is outlined, followed by a description of the Viking Lander biology and molecular analysis experiments and their results, as well as a summary of possible reasons why no organic compounds have been detected. A section concerning organic compounds in space and related experiments discusses the organic molecules we will use in simulation experiments. The set-up is discussed briefly in the following section. We conclude with an overview of future missions, stressing the relation between these missions and our laboratory experiments. The research described in this article has been developed as part of a Mars Express Recognized Cooperating Laboratory (RCL), and for planned future Mars missions such as the PASTEUR lander.


International Journal of Astrobiology | 2011

Field astrobiology research instruments and methods in moon-mars analogue site.

Bernard H. Foing; Carol R. Stoker; Jhony Zavaleta; Pascale Ehrenfreund; P. Sarrazin; D. Blake; J. Page; Vladimir Pletser; J. Hendrikse; M.S. Oliveira Lebre Direito; M. Kotler; Zita Martins; G. Orzechowska; C.S. Thiel; J. Clarke; J. Gross; Lorenz Wendt; A. M. Borst; S. T. M. Peters; M. B. Wilhelm; G. R. Davies; Ilewg EuroGeoMars Team

We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discussthe entire experimental approach fromdetermining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measure- ments as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements fromselected samplingsites. Wediscuss in sequence: the campaign objectivesand trade-off based on science, technicaloroperationalconstraints.Thisincludes remotesensingdataandmaps, andgeologicalcontext; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).


Fullerenes Nanotubes and Carbon Nanostructures | 2011

C84: A Prototype of Larger Fullerenes. Laboratory Spectroscopy and Astronomical Relevance

T. M. Halasinski; R. Ruiterkamp; Farid Salama; Bernard H. Foing; Pascale Ehrenfreund

We present for the first time the UV/Vis spectrum of the neutral and ionized fullerene C84 isolated in a neon matrix at low temperature. After ionization with high energy (10.2 eV) UV photons, we are able to identify a new spectroscopic absorption band at 718.2 nm that we tentatively attribute to the C84 + ion. We compare the optical spectrum to the diffuse interstellar absorption bands (DIBs) and find eight possible DIBs that fall within the expected shift induced by the solid matrix (± 5 nm) of the assigned C84 + absorption band at 713.6, 713.8, 715.4, 716.1, 718.0, 722.3, 722.4, and 722.8 nm. The astronomical C84 + column density that is required to account for the observed strength of these DIBs is calculated assuming the oscillator strength of the C84 + transition obtained from the laboratory spectrum (f = 0.004). We find that 0.08% and 0.06% of the cosmic carbon abundance would be required to reproduce the 713.6 and 715.4 nm DIB, respectively. A ratio of cosmic C84 + to C60 + of ∼7% or ∼5% is derived based on the assignment of C84 + to the weakest DIBs at 713.6 or 715.4 nm, respectively. Both ratios are in good agreement with the C84 + to C60 + ratio measured in the laboratory under various experimental conditions.


Science | 2015

The first mass spectrometry measurements of COSAC after touchdown on comet 67P/Churyumov-Gerasimenko

Fred Goesmann; H. Rosenbauer; Jan Hendrik Bredehöft; Michel Cabane; Pascale Ehrenfreund; Thomas Gautier; Chaitanya Giri; Harald Krüger; A. Mc-Dermott; S. McKenna-Lawlor; Uwe J. Meierhenrich; G. Muñoz Caro; F. Raulin; Reinhard Roll; Andrew Steele; Harald Steininger; Robert J. Sternberg; Cyril Szopa; Wolfram Thiemann; Stephan Ulamec

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta’s Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae’s initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds—methyl isocyanate, acetone, propionaldehyde, and acetamide—that had not previously been reported in comets.


International Journal of Astrobiology | 2011

Field astrobiology research in Moon-Mars analogue environments

Bernard H. Foing; Carol R. Stoker; Jhony Zavaleta; Pascale Ehrenfreund; Cora S. Thiel; P. Sarrazin; D. Blake; J. Page; Vladimir Pletser; J. Hendrikse; S. Direito; J. M. Kotler; Zita Martins; G. Orzechowska; C. Gross; Lorenz Wendt; Jonathan Clarke; A. M. Borst; S. T. M. Peters; M. B. Wilhelm; G. R. Davies; Ilewg EuroGeoMars Team

We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discussthe entire experimental approach fromdetermining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measure- ments as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements fromselected samplingsites. Wediscuss in sequence: the campaign objectivesand trade-off based on science, technicaloroperationalconstraints.Thisincludes remotesensingdataandmaps, andgeologicalcontext; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).

Collaboration


Dive into the Pascale Ehrenfreund's collaboration.

Top Co-Authors

Avatar

Zita Martins

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Orzechowska

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenz Wendt

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Frances Westall

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge