Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascale Guicheney is active.

Publication


Featured researches published by Pascale Guicheney.


Nature Genetics | 1998

A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy.

Patrick Vicart; Anne Caron; Pascale Guicheney; Zhenlin Li; Marie-Christine Prévost; Armelle Faure; Danielle Chateau; Françoise Chapon; Fernando M.S. Tomé; Jean-Marie Dupret; Denise Paulin; Michel Fardeau

Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM interval in chromosome 11q21–23. This region contains the αB-crystallin gene (CRYAB), a candidate gene encoding a 20-kD protein that is abundant in lens and is also present in a number of non-ocular tissues, including cardiac and skeletal muscle. αB-crystallin is a member of the small heat shock protein (shsp) family and possesses molecular chaperone activity. We identified an R120G missense mutation in CRYAB that co-segregates with the disease phenotype in this family. Muscle cell lines transfected with the mutant CRYAB cDNA showed intracellular aggregates that contain both desmin and αB-crystallin as observed in muscle fibers from DRM patients. These results are the first to identify a defect in a molecular chaperone as a cause for an inherited human muscle disorder.


American Journal of Human Genetics | 2001

Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan.

Martin Brockington; Derek J. Blake; Paola Prandini; Susan C. Brown; Silvia Torelli; Matthew A. Benson; Chris P. Ponting; Brigitte Estournet; Norma B. Romero; Eugenio Mercuri; Thomas Voit; C. Sewry; Pascale Guicheney; Francesco Muntoni

The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders presenting in infancy with muscle weakness, contractures, and dystrophic changes on skeletal-muscle biopsy. Structural brain defects, with or without mental retardation, are additional features of several CMD syndromes. Approximately 40% of patients with CMD have a primary deficiency (MDC1A) of the laminin alpha2 chain of merosin (laminin-2) due to mutations in the LAMA2 gene. In addition, a secondary deficiency of laminin alpha2 is apparent in some CMD syndromes, including MDC1B, which is mapped to chromosome 1q42, and both muscle-eye-brain disease (MEB) and Fukuyama CMD (FCMD), two forms with severe brain involvement. The FCMD gene encodes a protein of unknown function, fukutin, though sequence analysis predicts it to be a phosphoryl-ligand transferase. Here we identify the gene for a new member of the fukutin protein family (fukutin related protein [FKRP]), mapping to human chromosome 19q13.3. We report the genomic organization of the FKRP gene and its pattern of tissue expression. Mutations in the FKRP gene have been identified in seven families with CMD characterized by disease onset in the first weeks of life and a severe phenotype with inability to walk, muscle hypertrophy, marked elevation of serum creatine kinase, and normal brain structure and function. Affected individuals had a secondary deficiency of laminin alpha2 expression. In addition, they had both a marked decrease in immunostaining of muscle alpha-dystroglycan and a reduction in its molecular weight on western blot analysis. We suggest these abnormalities of alpha-dystroglycan are caused by its defective glycosylation and are integral to the pathology seen in MDC1C.


Heart Rhythm | 2010

An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing

Jamie D. Kapplinger; David J. Tester; Marielle Alders; Begoña Benito; Myriam Berthet; Josep Brugada; Pedro Brugada; Véronique Fressart; Alejandra Guerchicoff; Carole Harris-Kerr; Shiro Kamakura; Florence Kyndt; Tamara T. Koopmann; Yoshihiro Miyamoto; Ryan Pfeiffer; Guido D. Pollevick; Vincent Probst; Sven Zumhagen; Matteo Vatta; Jeffrey A. Towbin; Wataru Shimizu; Eric Schulze-Bahr; Charles Antzelevitch; Benjamin A. Salisbury; Pascale Guicheney; Arthur A.M. Wilde; Ramon Brugada; Jean-Jacques Schott; Michael J. Ackerman

BACKGROUND Brugada syndrome (BrS) is a common heritable channelopathy. Mutations in the SCN5A-encoded sodium channel (BrS1) culminate in the most common genotype. OBJECTIVE This study sought to perform a retrospective analysis of BrS databases from 9 centers that have each genotyped >100 unrelated cases of suspected BrS. METHODS Mutational analysis of all 27 translated exons in SCN5A was performed. Mutation frequency, type, and localization were compared among cases and 1,300 ostensibly healthy volunteers including 649 white subjects and 651 nonwhite subjects (blacks, Asians, Hispanics, and others) that were genotyped previously. RESULTS A total of 2,111 unrelated patients (78% male, mean age 39 +/- 15 years) were referred for BrS genetic testing. Rare mutations/variants were more common among BrS cases than control subjects (438/2,111, 21% vs. 11/649, 1.7% white subjects and 31/651, 4.8% nonwhite subjects, respectively, P <10(-53)). The yield of BrS1 genetic testing ranged from 11% to 28% (P = .0017). Overall, 293 distinct mutations were identified in SCN5A: 193 missense, 32 nonsense, 38 frameshift, 21 splice-site, and 9 in-frame deletions/insertions. The 4 most frequent BrS1-associated mutations were E1784K (14x), F861WfsX90 (11x), D356N (8x), and G1408R (7x). Most mutations localized to the transmembrane-spanning regions. CONCLUSION This international consortium of BrS genetic testing centers has added 200 new BrS1-associated mutations to the public domain. Overall, 21% of BrS probands have mutations in SCN5A compared to the 2% to 5% background rate of rare variants reported in healthy control subjects. Additional studies drawing on the data presented here may help further distinguish pathogenic mutations from similarly rare but otherwise innocuous ones found in cases.


Circulation Research | 2002

Absence of Calsequestrin 2 Causes Severe Forms of Catecholaminergic Polymorphic Ventricular Tachycardia

Alex V. Postma; Isabelle Denjoy; Theo M. Hoorntje; Jean-Marc Lupoglazoff; Antoine Da Costa; Pascale Sebillon; Marcel Mannens; Arthur A.M. Wilde; Pascale Guicheney

Abstract— Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare arrhythmogenic disorder characterized by syncopal events and sudden cardiac death at a young age during physical stress or emotion, in the absence of structural heart disease. We report the first nonsense mutations in the cardiac calsequestrin gene, CASQ2, in three CPVT families. The three mutations, a nonsense R33X, a splicing 532+1 G>A, and a 1-bp deletion, 62delA, are thought to induce premature stop codons. Two patients who experienced syncopes before the age of 7 years were homozygous carriers, suggesting a complete absence of calsequestrin 2. One patient was heterozygous for the stop codon and experienced syncopes from the age of 11 years. Despite the different mutations, there is little phenotypic variation of CPVT for the CASQ2 mutations. Of the 16 heterozygous carriers of these various mutations, 14 were devoid of clinical symptoms or ECG anomalies, whereas 2 of them had ventricular arrhythmias at ECG on exercise tests. In line with this, the diagnosis of the probands was difficult because of the absence of a positive family history. In conclusion, these additional three CASQ2 CPVT families suggest that CASQ2 mutations are more common than previously thought and produce a severe form of CPVT. The full text of this article is available at http://www.circresaha.org.


Circulation | 1997

KVLQT1 C-Terminal Missense Mutation Causes a Forme Fruste Long-QT Syndrome

Claire Donger; Isabelle Denjoy; Myriam Berthet; Nathalie Neyroud; Corinne Cruaud; Mohammed Bennaceur; Guy Chivoret; Ketty Schwartz; Philippe Coumel; Pascale Guicheney

BACKGROUND KVLQT1, the gene encoding the alpha-subunit of a cardiac potassium channel, is the most common cause of the dominant form of long-QT syndrome (LQT1-type), the Romano-Ward syndrome (RWS). The overall phenotype of RWS is characterized by a prolonged QT interval on the ECG and cardiac ventricular arrhythmias leading to recurrent syncopes and sudden death. However, there is considerable variability in the clinical presentation, and potential severity is often difficult to evaluate. To analyze the relationship between phenotypes and underlying defects in KVLQT1, we investigated mutations in this gene in 20 RWS families originating from France. METHODS AND RESULTS By PCR-SSCP analysis, 16 missense mutations were identified in KVLQT1, 11 of them being novel. Fifteen mutations, localized in the transmembrane domains S2-S3, S4-S5, P, and S6, were associated with a high percentage of symptomatic carriers (55 of 95, or 58%) and sudden deaths (23 of 95, or 24%). In contrast, a missense mutation, Arg555Cys, identified in the C-terminal domain in 3 families, was associated with a significantly less pronounced QT prolongation (459+/-33 ms, n=41, versus 480+/-32 ms, n=70, P=.0012), and significantly lower percentages of symptomatic carriers (7 of 44, or 16%, P<.001) and sudden deaths (2 of 44, or 5%, P<.01). Most of the cardiac events occurring in these 3 families were triggered by drugs known to affect ventricular repolarization. CONCLUSIONS Our data show a wide KVLQT1 allelic heterogeneity among 20 families in which KVLQT1 causes RWS. We describe the first missense mutation in the C-terminal domain of KVLQT1, which is clearly associated with a fruste phenotype, which could be a favoring factor of acquired LQT syndrome.


Circulation | 2009

Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia

Meiso Hayashi; Isabelle Denjoy; Fabrice Extramiana; Alice Maltret; Nathalie Roux Buisson; Jean-Marc Lupoglazoff; Didier Klug; Miyuki Hayashi; Seiji Takatsuki; Elisabeth Villain; Joël Kamblock; A. Messali; Pascale Guicheney; Joël Lunardi; Antoine Leenhardt

Background— The pathophysiological background of catecholaminergic polymorphic ventricular tachycardia is well understood, but the clinical features of this stress-induced arrhythmic disorder, especially the incidence and risk factors of arrhythmic events, have not been fully ascertained. Methods and Results— The outcome in 101 catecholaminergic polymorphic ventricular tachycardia patients, including 50 probands, was analyzed. During a mean follow-up of 7.9 years, cardiac events defined as syncope, aborted cardiac arrest, including appropriate discharges from implantable defibrillators, or sudden cardiac death occurred in 27 patients, including 2 mutation carriers with normal exercise tests. The estimated 8-year event rate was 32% in the total population and 27% and 58% in the patients with and without &bgr;-blockers, respectively. Absence of &bgr;-blockers (hazard ratio [HR], 5.48; 95% CI, 1.80 to 16.68) and younger age at diagnosis (HR, 0.54 per decade; 95% CI, 0.33 to 0.89) were independent predictors. Fatal or near-fatal events defined as aborted cardiac arrest or sudden cardiac death occurred in 13 patients, resulting in an estimated 8-year event rate of 13%. Absence of &bgr;-blockers (HR, 5.54; 95% CI, 1.17 to 26.15) and history of aborted cardiac arrest (HR, 13.01; 95% CI, 2.48 to 68.21) were independent predictors. No difference was observed in cardiac and fatal or near-fatal event rates between probands and family members. Conclusions— Cardiac and fatal or near-fatal events were not rare in both catecholaminergic polymorphic ventricular tachycardia probands and affected family members during the long-term follow-up, even while taking &bgr;-blockers, which was associated with a lower event rate. Further studies evaluating concomitant therapies are necessary to improve outcome in these patients.


Nature Genetics | 2005

Mutations in dynamin 2 cause dominant centronuclear myopathy

Marc Bitoun; Svetlana Maugenre; Pierre-Yves Jeannet; Emmanuelle Lacène; Xavier Ferrer; P. Laforêt; Jean-Jacques Martin; Jocelyn Laporte; Hanns Lochmüller; Alan H. Beggs; Michel Fardeau; Bruno Eymard; Norma B. Romero; Pascale Guicheney

Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.


The EMBO Journal | 1997

Properties of KvLQT1 K+ channel mutations in Romano–Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias

Christophe Chouabe; Nathalie Neyroud; Pascale Guicheney; Michel Lazdunski; Georges Romey

Mutations in the delayed rectifier K+ channel subunit KvLQT1 have been identified as responsible for both Romano–Ward (RW) and Jervell and Lange‐Nielsen (JLN) inherited long QT syndromes. We report the molecular cloning of a human KvLQT1 isoform that is expressed in several human tissues including heart. Expression studies revealed that the association of KvLQT1 with another subunit, IsK, reconstitutes a channel responsible for the IKs current involved in ventricular myocyte repolarization. Six RW and two JLN mutated KvLQT1 subunits were produced and co‐expressed with IsK in COS cells. All the mutants, except R555C, fail to produce functional homomeric channels and reduce the K+ current when co‐expressed with the wild‐type subunit. Thus, in both syndromes, the main effect of the mutations is a dominant‐negative suppression of KvLQT1 function. The JLN mutations have a smaller dominant‐negative effect, in agreement with the fact that the disease is recessive. The R555C subunit forms a functional channel when expressed with IsK, but with altered gating properties. The voltage dependence of the activation is strongly shifted to more positive values, and deactivation kinetics are accelerated. This finding indicates the functional importance of a small positively charged cytoplasmic region of the KvLQT structure where two RW and one JLN mutations have been found to take place.


Nature Genetics | 2001

Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome.

Behzad Moghadaszadeh; Nathalie Petit; Céline Jaillard; Martin Brockington; Susana Quijano Roy; Luciano Merlini; Norma B. Romero; Brigitte Estournet; Isabelle Desguerre; Denys Chaigne; Francesco Muntoni; Haluk Topaloglu; Pascale Guicheney

One form of congenital muscular dystrophy, rigid spine syndrome (MIM 602771), is a rare neuromuscular disorder characterized by early rigidity of the spine and respiratory insufficiency. A locus on 1p35–36 (RSMD1) was recently found to segregate with rigid spine muscular dystrophy 1 (ref. 1). Here we refine the locus and find evidence of linkage disequilibrium associated with SEPN1, which encodes the recently described selenoprotein N (ref. 2). Our identification and analysis of mutations in SEPN1 is the first description of a selenoprotein implicated in a human disease.


Nature Genetics | 2013

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

Connie R. Bezzina; Julien Barc; Yuka Mizusawa; Carol Ann Remme; Jean-Baptiste Gourraud; Floriane Simonet; Arie O. Verkerk; Peter J. Schwartz; Lia Crotti; Federica Dagradi; Pascale Guicheney; Véronique Fressart; Antoine Leenhardt; Charles Antzelevitch; Susan Bartkowiak; Martin Borggrefe; Rainer Schimpf; Eric Schulze-Bahr; Sven Zumhagen; Elijah R. Behr; Rachel Bastiaenen; Jacob Tfelt-Hansen; Morten S. Olesen; Stefan Kääb; Britt M. Beckmann; Peter Weeke; Hiroshi Watanabe; Naoto Endo; Tohru Minamino; Minoru Horie

Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) and near the HEY2 gene (rs9388451). Independent replication confirmed both signals (meta-analyses: rs10428132, P = 1.0 × 10−68; rs9388451, P = 5.1 × 10−17) and identified one additional signal in SCN5A (at 3p21; rs11708996, P = 1.0 × 10−14). The cumulative effect of the three loci on disease susceptibility was unexpectedly large (Ptrend = 6.1 × 10−81). The association signals at SCN5A-SCN10A demonstrate that genetic polymorphisms modulating cardiac conduction can also influence susceptibility to cardiac arrhythmia. The implication of association with HEY2, supported by new evidence that Hey2 regulates cardiac electrical activity, shows that Brugada syndrome may originate from altered transcriptional programming during cardiac development. Altogether, our findings indicate that common genetic variation can have a strong impact on the predisposition to rare diseases.

Collaboration


Dive into the Pascale Guicheney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Meyer

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge