Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascale Sandmann is active.

Publication


Featured researches published by Pascale Sandmann.


BMC Neuroscience | 2011

Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

Tino Zaehle; Pascale Sandmann; Jeremy D. Thorne; Lutz Jäncke; Christoph Herrmann

BackgroundTranscranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).ResultsResults showed that tDCS modulated WM performance by altering the underlying oscillatory brain activity in a polarity-specific way. We observed an increase in WM performance and amplified oscillatory power in the theta and alpha bands after anodal tDCS whereas cathodal tDCS interfered with WM performance and decreased oscillatory power in the theta and alpha bands under posterior electrode sides.ConclusionsThe present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings.


Brain | 2012

Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users

Pascale Sandmann; Norbert Dillier; Tom Eichele; Martin Meyer; Andrea Kegel; Roberto D. Pascual-Marqui; Valentine Marcar; Lutz Jäncke; Stefan Debener

Cross-modal reorganization in the auditory cortex has been reported in deaf individuals. However, it is not well understood whether this compensatory reorganization induced by auditory deprivation recedes once the sensation of hearing is partially restored through a cochlear implant. The current study used electroencephalography source localization to examine cross-modal reorganization in the auditory cortex of post-lingually deafened cochlear implant users. We analysed visual-evoked potentials to parametrically modulated reversing chequerboard images between cochlear implant users (n = 11) and normal-hearing listeners (n = 11). The results revealed smaller P100 amplitudes and reduced visual cortex activation in cochlear implant users compared with normal-hearing listeners. At the P100 latency, cochlear implant users also showed activation in the right auditory cortex, which was inversely related to speech recognition ability with the cochlear implant. These results confirm a visual take-over in the auditory cortex of cochlear implant users. Incomplete reversal of this deafness-induced cortical reorganization might limit clinical benefit from a cochlear implant and help explain the high inter-subject variability in auditory speech comprehension.


Experimental Brain Research | 2011

Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence

Tino Zaehle; Manuela Beretta; Lutz Jäncke; Christoph Herrmann; Pascale Sandmann

Transcranial direct current stimulation (tDCS) can systematically modify behavior by inducing changes in the underlying brain function. Objective electrophysiological evidence for tDCS-induced excitability changes has been demonstrated for the visual and somatosensory cortex, while evidence for excitability changes in the auditory cortex is lacking. In the present study, we applied tDCS over the left temporal as well as the left temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked potentials after anodal, cathodal, and sham stimulation. Results show that anodal and cathodal tDCS can modify auditory cortex reactivity. Moreover, auditory evoked potentials were differentially modulated as a function of site of stimulation. While anodal tDCS over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the temporo-parietal cortex induced larger N1 amplitudes. The results directly demonstrate excitability changes in the auditory cortex induced by active tDCS over the temporal and temporo-parietal cortex and might contribute to the understanding of mechanisms involved in the successful treatment of auditory disorders like tinnitus via tDCS.


Clinical Neurophysiology | 2010

Neurophysiological evidence of impaired musical sound perception in cochlear-implant users

Pascale Sandmann; Andrea Kegel; Tom Eichele; Norbert Dillier; Waikong Lai; Alexandra Bendixen; Stefan Debener; Lutz Jäncke; Martin Meyer

OBJECTIVE Music perception with a cochlear implant (CI) can be unsatisfactory because current-day implants are primarily designed to enable speech discrimination. The present study aimed at evaluating electrophysiological correlates of musical sound perception in CI users to help achieve the long-term goal of improved restoration of hearing in those individuals. METHODS Auditory discrimination accuracy in adult CI users (n=12) and matched normal-hearing controls (n=12) was measured by behavioral discrimination tasks and mismatch negativity (MMN) recordings. Discrimination profiles were obtained by using a set of clarinet sounds (original/vocoded) varying along different acoustic dimensions (frequency/intensity/duration) and deviation magnitudes (four levels). RESULTS Behavioral results and MMN recordings revealed reduced auditory discrimination accuracy in CI users. An inverse relationship was found between MMN amplitudes and duration of profound deafness. CONCLUSIONS CI users have difficulties in discriminating small changes in the acoustic properties of musical sounds. The recently developed multi-feature MMN paradigm (Pakarinen et al., 2007) can be used to objectively evaluate discrimination abilities of CI users for musical sounds. SIGNIFICANCE Measuring auditory discrimination functions by means of a multi-feature MMN paradigm could be of substantial clinical value by providing a comprehensive profile of the extent of restored hearing in CI users.


Behavioral and Brain Functions | 2010

Music listening while you learn: No influence of background music on verbal learning

Lutz Jäncke; Pascale Sandmann

BackgroundWhether listening to background music enhances verbal learning performance is still disputed. In this study we investigated the influence of listening to background music on verbal learning performance and the associated brain activations.MethodsMusical excerpts were composed for this study to ensure that they were unknown to the subjects and designed to vary in tempo (fast vs. slow) and consonance (in-tune vs. out-of-tune). Noise was used as control stimulus. 75 subjects were randomly assigned to one of five groups and learned the presented verbal material (non-words with and without semantic connotation) with and without background music. Each group was exposed to one of five different background stimuli (in-tune fast, in-tune slow, out-of-tune fast, out-of-tune slow, and noise). As dependent variable, the number of learned words was used. In addition, event-related desynchronization (ERD) and event-related synchronization (ERS) of the EEG alpha-band were calculated as a measure for cortical activation.ResultsWe did not find any substantial and consistent influence of background music on verbal learning. There was neither an enhancement nor a decrease in verbal learning performance during the background stimulation conditions. We found however a stronger event-related desynchronization around 800 - 1200 ms after word presentation for the group exposed to in-tune fast music while they learned the verbal material. There was also a stronger event-related synchronization for the group exposed to out-of-tune fast music around 1600 - 2000 ms after word presentation.ConclusionVerbal learning during the exposure to different background music varying in tempo and consonance did not influence learning of verbal material. There was neither an enhancing nor a detrimental effect on verbal learning performance. The EEG data suggest that the different acoustic background conditions evoke different cortical activations. The reason for these different cortical activations is unclear. The most plausible reason is that when background music draws more attention verbal learning performance is kept constant by the recruitment of compensatory mechanisms.


European Journal of Neuroscience | 2010

Refinement of metre perception--training increases hierarchical metre processing.

Eveline Geiser; Pascale Sandmann; Lutz Jäncke; Martin Meyer

Auditory metre perception refers to the ability to extract a temporally regular pulse and an underlying hierarchical structure of perceptual accents from a sequence of tones. Pulse perception is widely present in humans, and can be measured by the temporal expectancy for prospective tones, which listeners generate when presented with a metrical rhythm. We tested whether musical expertise leads to an increased perception and representation of the hierarchical structure of a metrical rhythm. Musicians and musical novices were tested in a mismatch negativity (MMN) paradigm for their sensitivity to perceptual accents on tones of the same pulse level (metre‐congruent deviant) and on tones of a lower hierarchical level (metre‐incongruent deviant). The difference between these two perceptual accents was more pronounced in the MMNs of the musicians than in those of the non‐musicians. That is, musical expertise includes increased sensitivity to metre, specifically to its hierarchical structure. This enhanced higher‐order temporal pattern perception makes musicians ideal models for investigating neural correlates of metre perception and, potentially, of related abstract pattern perception. Finally, our data show that small differences in sensitivity to higher‐order patterns can be captured by means of an MMN paradigm.


Brain | 2009

Evaluation of evoked potentials to dyadic tones after cochlear implantation

Pascale Sandmann; Tom Eichele; Michael Buechler; Stefan Debener; Lutz Jäncke; Norbert Dillier; Kenneth Hugdahl; Martin Meyer

Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of cochlear implant users (n = 12), which allowed detailed spatio-temporal evaluation of auditory evoked potentials by means of dipole source analysis. The present study examined hemispheric asymmetries of auditory evoked potentials to musical sounds in cochlear implant users to evaluate the effect of this type of implantation on neuronal activity. In particular, implant users were presented with two dyadic tonal intervals in an active oddball design and in a passive listening condition. Principally, the results show that independent component analysis is an efficient approach that enables the study of neurophysiological mechanisms of restored auditory function in cochlear implant users. Moreover, our data indicate altered hemispheric asymmetries for dyadic tone processing in implant users compared with listeners with normal hearing (n = 12). We conclude that the evaluation of auditory evoked potentials are of major relevance to understanding auditory cortex function after cochlear implantation and could be of substantial clinical value by indicating the maturation/reorganization of the auditory system after implantation.


Hearing Research | 2012

Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials.

Filipa Campos Viola; Maarten De Vos; Jemma Hine; Pascale Sandmann; Stefan Bleeck; Julie Eyles; Stefan Debener

Electrical artifacts caused by the cochlear implant (CI) contaminate electroencephalographic (EEG) recordings from implanted individuals and corrupt auditory evoked potentials (AEPs). Independent component analysis (ICA) is efficient in attenuating the electrical CI artifact and AEPs can be successfully reconstructed. However the manual selection of CI artifact related independent components (ICs) obtained with ICA is unsatisfactory, since it contains expert-choices and is time consuming. We developed a new procedure to evaluate temporal and topographical properties of ICs and semi-automatically select those components representing electrical CI artifact. The CI Artifact Correction (CIAC) algorithm was tested on EEG data from two different studies. The first consists of published datasets from 18 CI users listening to environmental sounds. Compared to the manual IC selection performed by an expert the sensitivity of CIAC was 91.7% and the specificity 92.3%. After CIAC-based attenuation of CI artifacts, a high correlation between age and N1-P2 peak-to-peak amplitude was observed in the AEPs, replicating previously reported findings and further confirming the algorithms validity. In the second study AEPs in response to pure tone and white noise stimuli from 12 CI users that had also participated in the other study were evaluated. CI artifacts were attenuated based on the IC selection performed semi-automatically by CIAC and manually by one expert. Again, a correlation between N1 amplitude and age was found. Moreover, a high test-retest reliability for AEP N1 amplitudes and latencies suggested that CIAC-based attenuation reliably preserves plausible individual response characteristics. We conclude that CIAC enables the objective and efficient attenuation of the CI artifact in EEG recordings, as it provided a reasonable reconstruction of individual AEPs. The systematic pattern of individual differences in N1 amplitudes and latencies observed with different stimuli at different sessions, strongly suggests that CIAC can overcome the electrical artifact problem. Thus CIAC facilitates the use of cortical AEPs as an objective measurement of auditory rehabilitation.


Clinical Neurophysiology | 2015

Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation.

Pascale Sandmann; Karsten Plotz; Nadine Hauthal; Maarten De Vos; Rüdiger Schönfeld; Stefan Debener

OBJECTIVE Cochlear implants (CIs) can partially restore hearing, but the cortical changes underlying auditory rehabilitation are not well understood. METHODS This prospective longitudinal study used electroencephalography (EEG) to examine the temporal dynamics of changes in the auditory cortex contralateral and ipsilateral to the CI. Postlingually deafened CI recipients (N=11; mean: 59years) performed an auditory frequency discrimination task after <1week, 8weeks, 15weeks, and 59weeks of CI use. RESULTS The CI users revealed a remarkable improvement in auditory discrimination ability which was most pronounced over the first eight weeks of CI experience. At the same time, CI users developed N1 auditory event-related potentials (AEP) with significantly enhanced amplitude and decreased latency, both in the auditory cortex contralateral and ipsilateral to the CI. A relationship was found between the duration of deafness and the ipsilateral AEP latency. CONCLUSIONS Postlingually deafened adult CI users show rapid adaptation of the bilateral auditory cortex. Cortical plasticity is limited after long duration of auditory deprivation. SIGNIFICANCE The finding of rapid and limited cortical changes in adult CI recipients may be of clinical relevance and can help estimate the role of plasticity for therapeutic gain.


NeuroImage | 2015

Cross-modal reorganization in cochlear implant users: Auditory cortex contributes to visual face processing

Maren Stropahl; Karsten Plotz; Rüdiger Schönfeld; Thomas Lenarz; Pascale Sandmann; Galit Yovel; Maarten De Vos; Stefan Debener

There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive.

Collaboration


Dive into the Pascale Sandmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Herrmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge