Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascale Zimmermann is active.

Publication


Featured researches published by Pascale Zimmermann.


Nature Cell Biology | 2012

Syndecan-syntenin-ALIX regulates the biogenesis of exosomes

Maria Francesca Baietti; Zhe Zhang; Eva Mortier; Aurélie Melchior; Gisèle Degeest; Annelies Geeraerts; Ylva Ivarsson; Fabienne Depoortere; Christien Coomans; Elke Vermeiren; Pascale Zimmermann; Guido David

The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan–syntenin–ALIX in membrane transport and signalling processes.


The FASEB Journal | 1999

The syndecans, tuners of transmembrane signaling

Pascale Zimmermann; Guido David

Syndecans, a family of transmembrane proteoglycans, are putative integrators of extracellular signals. The interaction of syndecans with extracellular ligands via particular motifs in their heparan sulfate chains, their clustering, association with particular cytoskeletal structures, binding to cytoplasmic effectors, and intracellular phosphorylation represent as many means to bring this role to a successful conclusion. In this review, we will briefly address the characteristics of syndecans as heparan sulfate proteoglycans (HSPGs) and focus mainly on the properties, binding interactions, and potential signaling functions of the cytoplasmic domains of these molecules.—Zimmermann, P., David, G. The syndecans, tuners of transmembrane signaling. FASEB J. 13 (Suppl.), S91–S100 (1999)


Nature Medicine | 2011

Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy

Charlotte Fugier; Arnaud F Klein; Caroline Hammer; Stéphane Vassilopoulos; Ylva Ivarsson; Anne Toussaint; Valérie Tosch; Alban Vignaud; Arnaud Ferry; Nadia Messaddeq; Yosuke Kokunai; Rie Tsuburaya; Pierre de la Grange; Doulaye Dembélé; Virginie François; Guillaume Précigout; Charlotte Boulade-Ladame; Marie-Christine Hummel; Adolfo López de Munain; Nicolas Sergeant; Annie Laquerrière; Christelle Thibault; François Deryckere; Didier Auboeuf; Luis Garcia; Pascale Zimmermann; Bjarne Udd; Benedikt Schoser; Masanori P. Takahashi; Ichizo Nishino

Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate–binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.


Molecular Cell | 2002

PIP2-PDZ Domain Binding Controls the Association of Syntenin with the Plasma Membrane

Pascale Zimmermann; Kris Meerschaert; Gunter Reekmans; Iris Leenaerts; J. Victor Small; Joël Vandekerckhove; Guido David; Jan Gettemans

PDZ proteins organize multiprotein signaling complexes. According to current views, PDZ domains engage in protein-protein interactions. Here we show that the PDZ domains of several proteins bind phosphatidylinositol 4,5-bisphosphate (PIP(2)). High-affinity binding of syntenin to PIP(2)-containing lipid layers requires both PDZ domains of this protein. Competition and mutagenesis experiments reveal that the protein and the PIP(2) binding sites in the PDZ domains overlap. Overlay assays indicate that the two PDZ domains of syntenin cooperate in binding to cognate peptides and PIP(2). Experiments on living cells demonstrate PIP(2)-dependent and peptide-dependent modes of plasma membrane association of the PDZ domains of syntenin. These observations suggest that local changes in phosphoinositide concentration control the association of PDZ proteins with their target receptors at the plasma membrane.


Current Opinion in Cell Biology | 2009

The signaling mechanisms of syndecan heparan sulfate proteoglycans.

Kathleen Lambaerts; Sarah A. Wilcox-Adelman; Pascale Zimmermann

Syndecans are membrane proteins controlling cell proliferation, differentiation, adhesion, and migration. Their extracellular domains bear versatile heparan sulfate chains that provide structural determinants for syndecans to function as coreceptors or activators for molecules like growth factors and constituents of the matrix. Syndecans also signal via their protein cores and their conserved transmembrane and cytoplasmic domains. The direct interactions and signaling cascades they support are becoming better characterized. These interactions are regulated by phosphorylation, induced clustering and shedding of the syndecan extracellular domain. Moreover evidence is emerging that syndecans concentrate in unconventional lipid domains and might govern novel vesicular trafficking pathways. Here we focus on recent findings that refine our understanding of the complex structure-function relationships of these cellular effectors.


Journal of Cell Biology | 2009

New PI(4,5)P2- and membrane proximal integrin–binding motifs in the talin head control β3-integrin clustering

Frédéric Saltel; Eva Mortier; Vesa P. Hytönen; Marie-Claude Jacquier; Pascale Zimmermann; Viola Vogel; Wei-Wei Liu; Bernhard Wehrle-Haller

A talin intermolecular interaction autoinhibits its own activation and regulates β3-integrin binding. When bound, β3-integrin undergoes structural alterations that prevent its β and α subunits from associating, maintaining β3-integrins clustering capability.


Nature Communications | 2014

Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2

Rania Ghossoub; Frédérique Lembo; Aude Rubio; Carole Baron Gaillard; Jérôme Bouchet; Nicolas Vitale; Josef Slavík; Miroslav Machala; Pascale Zimmermann

Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.


The EMBO Journal | 2005

Nuclear speckles and nucleoli targeting by PIP2–PDZ domain interactions

Eva Mortier; Gunther Wuytens; Iris Leenaerts; Femke Hannes; Man Y Heung; Gisèle Degeest; Guido David; Pascale Zimmermann

PDZ (Postsynaptic density protein, Disc large, Zona occludens) domains are protein–protein interaction modules that predominate in submembranous scaffolding proteins. Recently, we showed that the PDZ domains of syntenin‐1 also interact with phosphatidylinositol 4,5‐bisphosphate (PIP2) and that this interaction controls the recruitment of the protein to the plasma membrane. Here we evaluate the general importance of PIP2–PDZ domain interactions. We report that most PDZ proteins bind weakly to PIP2, but that syntenin‐2, the closest homolog of syntenin‐1, binds with high affinity to PIP2 via its PDZ domains. Surprisingly, these domains target syntenin‐2 to nuclear PIP2 pools, in nuclear speckles and nucleoli. Targeting to these sites is abolished by treatments known to affect these PIP2 pools. Mutational and domain‐swapping experiments indicate that high‐affinity binding to PIP2 requires both PDZ domains of syntenin‐2, but that its first PDZ domain contains the nuclear PIP2 targeting determinants. Depletion of syntenin‐2 disrupts the nuclear speckles–PIP2 pattern and affects cell survival and cell division. These findings show that PIP2–PDZ domain interactions can directly contribute to subnuclear assembly processes.


Cell Research | 2015

Heparanase activates the syndecan-syntenin-ALIX exosome pathway

Bart Roucourt; Sofie Meeussen; Jie Bao; Pascale Zimmermann; Guido David

Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.


Journal of Immunology | 2009

Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells.

Geoffrey Guittard; Audrey Gérard; Sophie Dupuis-Coronas; Hélène Tronchère; Eva Mortier; Cédric Favre; Daniel Olive; Pascale Zimmermann; Bernard Payrastre; Jacques A. Nunès

Downstream of tyrosine kinase (Dok) proteins Dok-1 and Dok-2 are involved in T cell homeostasis maintenance. Dok protein tyrosine phosphorylation plays a key role in establishing negative feedback loops of T cell signaling. These structurally related adapter molecules contain a pleckstrin homology (PH) domain generally acting as a lipid/protein-interacting module. We show that the presence of this PH domain is necessary for the tyrosine phosphorylation of Dok proteins and their negative functions in T cells. We find that Dok-1/Dok-2 PH domains bind in vitro to the rare phosphoinositide species, phosphatidylinositol 5-phosphate (PtdIns5P). Dok tyrosine phosphorylation correlates with PtdIns5P production in T cells upon TCR triggering. Furthermore, we demonstrate that PtdIns5P increase regulates Dok tyrosine phosphorylation in vivo. Together, our data identify a novel lipid mediator in T cell signaling and suggest that PH-PtdIns5P interactions regulate T cell responses.

Collaboration


Dive into the Pascale Zimmermann's collaboration.

Top Co-Authors

Avatar

Guido David

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eva Mortier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gisèle Degeest

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ylva Ivarsson

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christien Coomans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elke Vermeiren

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Iris Leenaerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rudra Kashyap

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhe Zhang

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge