Pascual Perez
SupAgro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascual Perez.
The Plant Cell | 2003
Isabelle Debeaujon; Nathalie Nesi; Pascual Perez; Martine Devic; Olivier Grandjean; Michel Caboche; Loïc Lepiniec
Anthocyanidin reductase encoded by the BANYULS (BAN) gene is the core enzyme in proanthocyanidin (PA) biosynthesis. Here, we analyzed the developmental mechanisms that regulate the spatiotemporal expression of BAN in the developing Arabidopsis seed coat. PA-accumulating cells were localized histochemically in the inner integument (seed body and micropyle) and pigment strand (chalaza). BAN promoter activity was detected specifically in these cells. Gain-of-function experiments showed that an 86-bp promoter fragment functioned as an enhancer specific for PA-accumulating cells. Mutations in regulatory genes of PA biosynthesis abolished BAN promoter activity (transparent testa2 [tt2], tt8, and transparent testa glabra1 [ttg1]), modified its spatial pattern (tt1 and tt16), or had no influence (ttg2), thus revealing complex regulatory interactions at several developmental levels. Genetic ablation of PA-accumulating cells targeted by the BAN promoter fused to BARNASE led to the formation of normal plants that produced viable yellow seeds. Importantly, these seeds had no obvious defects in endosperm and embryo development.
The Plant Cell | 2006
Antoine Martin; Judy Lee; Thomas Kichey; Denise Gerentes; Michel Zivy; Christophe Tatout; Frédéric Dubois; Thierry Balliau; Benoît Valot; Marlène Davanture; Thérèse Tercé-Laforgue; Isabelle Quilleré; Marie Coque; André Gallais; María-Begoña Gonzalez-Moro; Linda Bethencourt; Dimah Z. Habash; Peter J. Lea; Alain Charcosset; Pascual Perez; Alain Murigneux; Hitoshi Sakakibara; Keith J. Edwards; Bertrand Hirel
The roles of two cytosolic maize glutamine synthetase isoenzymes (GS1), products of the Gln1-3 and Gln1-4 genes, were investigated by examining the impact of knockout mutations on kernel yield. In the gln1-3 and gln1-4 single mutants and the gln1-3 gln1-4 double mutant, GS mRNA expression was impaired, resulting in reduced GS1 protein and activity. The gln1-4 phenotype displayed reduced kernel size and gln1-3 reduced kernel number, with both phenotypes displayed in gln1-3 gln1-4. However, at maturity, shoot biomass production was not modified in either the single mutants or double mutants, suggesting a specific impact on grain production in both mutants. Asn increased in the leaves of the mutants during grain filling, indicating that it probably accumulates to circumvent ammonium buildup resulting from lower GS1 activity. Phloem sap analysis revealed that unlike Gln, Asn is not efficiently transported to developing kernels, apparently causing reduced kernel production. When Gln1-3 was overexpressed constitutively in leaves, kernel number increased by 30%, providing further evidence that GS1-3 plays a major role in kernel yield. Cytoimmunochemistry and in situ hybridization revealed that GS1-3 is present in mesophyll cells, whereas GS1-4 is specifically localized in the bundle sheath cells. The two GS1 isoenzymes play nonredundant roles with respect to their tissue-specific localization.
The Plant Cell | 2004
José F. Gutierrez-Marcos; Liliana M. Costa; Corinne Biderre-Petit; Bouchaib Khbaya; Donal M. O'Sullivan; Mark R. Wormald; Pascual Perez; Hugh G. Dickinson
Growth of the maize (Zea mays) endosperm is tightly regulated by maternal zygotic and sporophytic genes, some of which are subject to a parent-of-origin effect. We report here a novel gene, maternally expressed gene1 (meg1), which shows a maternal parent-of-origin expression pattern during early stages of endosperm development but biallelic expression at later stages. Interestingly, a stable reporter fusion containing the meg1 promoter exhibits a similar pattern of expression. meg1 is exclusively expressed in the basal transfer region of the endosperm. Further, we show that the putatively processed MEG1 protein is glycosylated and subsequently localized to the labyrinthine ingrowths of the transfer cell walls. Hence, the discovery of a parent-of-origin gene expressed solely in the basal transfer region opens the door to epigenetic mechanisms operating in the endosperm to regulate certain aspects of nutrient trafficking from the maternal tissue into the developing seed.
Nature Genetics | 2006
José F. Gutierrez-Marcos; Liliana M. Costa; Mauro Dal Prà; Stefan Scholten; Erhard Kranz; Pascual Perez; Hugh G. Dickinson
Plant imprinted genes show parent-of-origin expression in seed endosperm, but little is known about the nature of parental imprints in gametes before fertilization. We show here that single differentially methylated regions (DMRs) correlate with allele-specific expression of two maternally expressed genes in the seed and that one DMR is differentially methylated between gametes. Thus, plants seem to have developed similar strategies as mammals to epigenetically mark imprinted genes.
The Plant Cell | 2007
José F. Gutierrez-Marcos; Mauro Dal Prà; Anna Giulini; Liliana M. Costa; G. Gavazzi; Sylvain Cordelier; Olivier Sellam; Christophe Tatout; Wyatt Paul; Pascual Perez; Hugh G. Dickinson; Gabriella Consonni
The pentatricopeptide repeat (PPR) family represents one of the largest gene families in plants, with >440 members annotated in Arabidopsis thaliana. PPR proteins are thought to have a major role in the regulation of posttranscriptional processes in organelles. Recent studies have shown that Arabidopsis PPR proteins play an essential, nonredundant role during embryogenesis. Here, we demonstrate that mutations in empty pericarp4 (emp4), a maize (Zea mays) PPR-encoding gene, confer a seed-lethal phenotype. Mutant endosperms are severely impaired, with highly irregular differentiation of transfer cells in the nutrient-importing basal endosperm. Analysis of homozygous mutant plants generated from embryo-rescue experiments indicated that emp4 also affects general plant growth. The emp4-1 mutation was identified in an active Mutator (Mu) population, and cosegregation analysis revealed that it arose from a Mu3 element insertion. Evidence of emp4 molecular cloning was provided by the isolation of four additional emp4 alleles obtained by a reverse genetics approach. emp4 encodes a novel type of PPR protein of 614 amino acids. EMP4 contains nine 35–amino acid PPR motifs and an N-terminal mitochondrion-targeted sequence peptide, which was confirmed by a translational EMP4–green fluorescent protein fusion that localized to mitochondria. Molecular analyses further suggest that EMP4 is necessary to regulate the correct expression of a small subset of mitochondrial transcripts in the endosperm.
Plant Journal | 2009
Vanessa Vernoud; Guillaume Laigle; Frédérique Rozier; Robert B. Meeley; Pascual Perez; Peter M. Rogowsky
Among the genes controlling the differentiation and maintenance of epidermal cell fate are members of the HD-ZIP IV class family of plant-specific transcription factors, most of which are specifically expressed in the epidermis of tissues. Here, we report the functional analysis of the maize HD-ZIP IV gene OCL4 (outer cell layer 4) via the phenotypic analysis of two insertional mutants, and of OCL4-RNAi transgenic plants. In all three materials, the macrohairs, one of the three types of trichomes present on adult maize leaf blades, developed ectopically at the margin of juvenile and adult leaves. Consistent with this phenotype, OCL4 is expressed in the epidermis of the leaf blade, with a maximum at the margin of young leaf primordia. Expression of OCL4 in the model plant Arabidopsis under the control of the GLABRA2 (GL2) promoter, a member of the Arabidopsis HD-ZIP IV family involved in trichome differentiation, did not complement the gl2-1 mutant, but instead aggravated its phenotype. The construct also caused a glabrous appearance of rosette leaves in transformed control plants of the Ler ecotype, suggesting that OCL4 inhibits trichome development both in maize and Arabidopsis. Furthermore, insertional mutants showed a partial male sterility that is likely to result from the presence of an extra subepidermal cell layer with endothecium characteristics in the anther wall. Interestingly, the epidermis-specific OCL4 expression in immature anthers was restricted to the region of the anther locule where the extra cell layer differentiated. Taken together these results suggest that OCL4 inhibits trichome development and influences division and/or differentiation of the anther cell wall.
The Plant Cell | 2009
Elisa Gómez; Joaquín Royo; Luis M. Muñiz; Olivier Sellam; Wyatt Paul; Denise Gerentes; Cristina Barrero; Maribel López; Pascual Perez; Gregorio Hueros
Transfer cells are highly modified plant cells specialized in the transport of solutes. They differentiate at many plant exchange surfaces, including phloem loading and unloading zones such as those present in the sink organs and seeds. In maize (Zea mays) seeds, transfer cells are located at the base of the endosperm. It is currently unknown how apical-basal polarity is established or why the peripheral cells at the base of the endosperm differentiate into transfer instead of aleurone cells. Here, we show that in epidermal cells committed to develop into aleurone cells, the ectopic expression of the transfer cell-specific transcriptional activator Myb-Related Protein-1 (MRP-1) is sufficient to temporarily transform them into transfer cells. These transformed cells acquire distinct transfer cell features, such as cell wall ingrowths and an elongated shape. In addition, they express a number of MRP-1 target genes presumably involved in defense. We also show that the expression of MRP-1 is needed to maintain the transfer cell phenotype. Later in development, an observed reduction in the ectopic expression of MRP-1 was followed by the reversion of the transformed cells, which then acquire aleurone cell features.
Plant Physiology | 2006
Xueyuan Cao; Liliana M. Costa; Corinne Biderre-Petit; Bouchab Kbhaya; Nrisingha Dey; Pascual Perez; Donald R. McCarty; José F. Gutierrez-Marcos; Philip W. Becraft
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to β-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
Gene | 2000
Jean-François Bonello; Hilde‐Gunn Opsahl‐Ferstad; Pascual Perez; Christian Dumas; Peter M. Rogowsky
Esr genes share high homology among each other, code for small hydrophilic proteins, and are expressed in a restricted region of maize endosperm surrounding the embryo. We show here that not only Esr2 but also Esr1 and Esr3 are expressed in maize, and that the relative contribution of Esr1, Esr2 and Esr3 to total Esr mRNA is 17%, 55% and 28%, respectively. DNA sequence analysis of putative promoter fragments ranging from 0.53 kb to 3.54 kb revealed the presence of retrotransposons related to the Zeon and Cinful families in the distal parts of the promoters. The proximal parts show high homology that extended over 504bp between Esr2 and Esr3, and 265bp between Esr1 and the other two genes. The most conspicuous potential cis element is a fully conserved tandem repeat of the sequence CTACACCA close to the respective open reading frames (ORFs). By the analysis of transgenic maize plants carrying promoter-Gus fusions, it was shown that all three cloned upstream fragments contain functional promoters, that the spatial activity of all three Esr promoters is identical, and that the cis element(s) responsible for the expression in the embryo surrounding region reside in the 265 bp upstream of the respective ORFs.
Nucleic Acids Research | 2008
Pierre Larmande; Mathias Lorieux; Christophe Perin; Matthieu Bouniol; Gaëtan Droc; Christophe Sallaud; Pascual Perez; Isabelle Barnola; Corinne Biderre-Petit; Jérôme Martin; Jean Benoı̂t Morel; Alexander A. T. Johnson; Fabienne Bourgis; Alain Ghesquière; Manuel Ruiz; Brigitte Courtois; Emmanuel Guiderdoni
To organize data resulting from the phenotypic characterization of a library of 30 000 T-DNA enhancer trap (ET) insertion lines of rice (Oryza sativa L cv. Nipponbare), we developed the Oryza Tag Line (OTL) database (http://urgi.versailles.inra.fr/OryzaTagLine/). OTL structure facilitates forward genetic search for specific phenotypes, putatively resulting from gene disruption, and/or for GUSA or GFP reporter gene expression patterns, reflecting ET-mediated endogenous gene detection. In the latest version, OTL gathers the detailed morpho-physiological alterations observed during field evaluation and specific screens in a first set of 13 928 lines. Detection of GUS or GFP activity in specific organ/tissues in a subset of the library is also provided. Search in OTL can be achieved through trait ontology category, organ and/or developmental stage, keywords, expression of reporter gene in specific organ/tissue as well as line identification number. OTL now contains the description of 9721 mutant phenotypic traits observed in 2636 lines and 1234 GUS or GFP expression patterns. Each insertion line is documented through a generic passport data including production records, seed stocks and FST information. 8004 and 6101 of the 13 928 lines are characterized by at least one T-DNA and one Tos17 FST, respectively that OTL links to the rice genome browser OryGenesDB.