Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasi Soininen is active.

Publication


Featured researches published by Pasi Soininen.


Nature Genetics | 2012

Genome-wide association study identifies multiple loci influencing human serum metabolite levels

Johannes Kettunen; Taru Tukiainen; Antti-Pekka Sarin; Alfredo Ortega-Alonso; Emmi Tikkanen; L. P. Lyytikäinen; Antti J. Kangas; Pasi Soininen; Peter Würtz; Kaisa Silander; Danielle M. Dick; Richard J. Rose; Markku J. Savolainen; J. Viikari; Mika Kähönen; Terho Lehtimäki; Kirsi H. Pietiläinen; Michael Inouye; Mark I. McCarthy; Antti Jula; Johan G. Eriksson; Olli T. Raitakari; Salomaa; Jaakko Kaprio; Järvelin Mr; Leena Peltonen; Markus Perola; Nelson B. Freimer; Mika Ala-Korpela; Aarno Palotie

Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders.


Diabetes Care | 2013

Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults

Peter Würtz; Pasi Soininen; Antti J. Kangas; Tapani Rönnemaa; Terho Lehtimäki; Mika Kähönen; Jorma Viikari; Olli T. Raitakari; Mika Ala-Korpela

OBJECTIVE Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. RESEARCH DESIGN AND METHODS Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 years; 54% women). Insulin resistance was estimated by homeostasis model assessment (HOMA) at baseline and 6-year follow-up. Amino acid associations with HOMA of insulin resistance (HOMA-IR) and glucose were assessed using regression models adjusted for established risk factors. We further examined whether amino acid profiling could augment risk assessment of insulin resistance (defined as 6-year HOMA-IR >90th percentile) in early adulthood. RESULTS Isoleucine, leucine, valine, phenylalanine, and tyrosine were associated with HOMA-IR at baseline and for men at 6-year follow-up, while for women only leucine, valine, and phenylalanine predicted 6-year HOMA-IR (P < 0.05). None of the other amino acids were prospectively associated with HOMA-IR. The sum of branched-chain and aromatic amino acid concentrations was associated with 6-year insulin resistance for men (odds ratio 2.09 [95% CI 1.38–3.17]; P = 0.0005); however, including the amino acid score in prediction models did not improve risk discrimination. CONCLUSIONS Branched-chain and aromatic amino acids are markers of the development of insulin resistance in young, normoglycemic adults, with most pronounced associations for men. These findings suggest that the association of branched-chain and aromatic amino acids with the risk for future diabetes is at least partly mediated through insulin resistance.


Molecular Systems Biology | 2010

Metabonomic, transcriptomic, and genomic variation of a population cohort

Michael Inouye; Johannes Kettunen; Pasi Soininen; Kaisa Silander; Samuli Ripatti; Linda Kumpula; Eija Hämäläinen; Pekka Jousilahti; Antti J. Kangas; Satu Männistö; Markku J. Savolainen; Antti Jula; Jaana Leiviskä; Aarno Palotie; Veikko Salomaa; Markus Perola; Mika Ala-Korpela; Leena Peltonen

Comprehensive characterization of human tissues promises novel insights into the biological architecture of human diseases and traits. We assessed metabonomic, transcriptomic, and genomic variation for a large population‐based cohort from the capital region of Finland. Network analyses identified a set of highly correlated genes, the lipid–leukocyte (LL) module, as having a prominent role in over 80 serum metabolites (of 134 measures quantified), including lipoprotein subclasses, lipids, and amino acids. Concurrent association with immune response markers suggested the LL module as a possible link between inflammation, metabolism, and adiposity. Further, genomic variation was used to generate a directed network and infer LL modules largely reactive nature to metabolites. Finally, gene co‐expression in circulating leukocytes was shown to be dependent on serum metabolite concentrations, providing evidence for the hypothesis that the coherence of molecular networks themselves is conditional on environmental factors. These findings show the importance and opportunity of systematic molecular investigation of human population samples. To facilitate and encourage this investigation, the metabonomic, transcriptomic, and genomic data used in this study have been made available as a resource for the research community.


Diabetes | 2012

Metabolic Signatures of Insulin Resistance in 7,098 Young Adults

Peter Würtz; Ville Petteri Mäkinen; Pasi Soininen; Antti J. Kangas; Taru Tukiainen; Johannes Kettunen; Markku J. Savolainen; Tuija Tammelin; Jorma Viikari; Tapani Rönnemaa; Mika Kähönen; Terho Lehtimäki; Samuli Ripatti; Olli T. Raitakari; Marjo-Riitta Järvelin; Mika Ala-Korpela

Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.


Circulation | 2015

Metabolite Profiling and Cardiovascular Event Risk A Prospective Study of 3 Population-Based Cohorts

Peter Würtz; Aki S. Havulinna; Pasi Soininen; Tuulia Tynkkynen; David Prieto-Merino; Therese Tillin; Anahita Ghorbani; Anna Artati; Qin Wang; Mika Tiainen; Antti J. Kangas; Johannes Kettunen; Jari Kaikkonen; Vera Mikkilä; Antti Jula; Mika Kähönen; Terho Lehtimäki; Debbie A. Lawlor; Tom R. Gaunt; Alun D. Hughes; Naveed Sattar; Thomas Illig; Jerzy Adamski; Thomas J. Wang; Markus Perola; Samuli Ripatti; Olli T. Raitakari; Robert E. Gerszten; Juan-Pablo Casas; Nish Chaturvedi

Background— High-throughput profiling of circulating metabolites may improve cardiovascular risk prediction over established risk factors. Methods and Results— We applied quantitative nuclear magnetic resonance metabolomics to identify the biomarkers for incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted in the National Finnish FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was assessed in the Southall and Brent Revisited (SABRE) study (n=2622; 573 events) and British Women’s Health and Heart Study (n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were associated with incident cardiovascular events at P<0.0007 after adjusting for age, sex, blood pressure, smoking, diabetes mellitus, and medication. When further adjusting for routine lipids, 4 metabolites were associated with future cardiovascular events in meta-analyses: higher serum phenylalanine (hazard ratio per standard deviation, 1.18; 95% confidence interval, 1.12–1.24; P=4×10–10) and monounsaturated fatty acid levels (1.17; 1.11–1.24; P=1×10–8) were associated with increased cardiovascular risk, while higher omega-6 fatty acids (0.89; 0.84–0.94; P=6×10–5) and docosahexaenoic acid levels (0.90; 0.86–0.95; P=5×10–5) were associated with lower risk. A risk score incorporating these 4 biomarkers was derived in FINRISK. Risk prediction estimates were more accurate in the 2 validation cohorts (relative integrated discrimination improvement, 8.8% and 4.3%), albeit discrimination was not enhanced. Risk classification was particularly improved for persons in the 5% to 10% risk range (net reclassification, 27.1% and 15.5%). Biomarker associations were further corroborated with mass spectrometry in FINRISK (n=671) and the Framingham Offspring Study (n=2289). Conclusions— Metabolite profiling in large prospective cohorts identified phenylalanine, monounsaturated fatty acids, and polyunsaturated fatty acids as biomarkers for cardiovascular risk. This study substantiates the value of high-throughput metabolomics for biomarker discovery and improved risk assessment.Background— High-throughput profiling of circulating metabolites may improve cardiovascular risk prediction over established risk factors. Methods and Results— We applied quantitative nuclear magnetic resonance metabolomics to identify the biomarkers for incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted in the National Finnish FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was assessed in the Southall and Brent Revisited (SABRE) study (n=2622; 573 events) and British Women’s Health and Heart Study (n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were associated with incident cardiovascular events at P <0.0007 after adjusting for age, sex, blood pressure, smoking, diabetes mellitus, and medication. When further adjusting for routine lipids, 4 metabolites were associated with future cardiovascular events in meta-analyses: higher serum phenylalanine (hazard ratio per standard deviation, 1.18; 95% confidence interval, 1.12–1.24; P =4×10–10) and monounsaturated fatty acid levels (1.17; 1.11–1.24; P =1×10–8) were associated with increased cardiovascular risk, while higher omega-6 fatty acids (0.89; 0.84–0.94; P =6×10–5) and docosahexaenoic acid levels (0.90; 0.86–0.95; P =5×10–5) were associated with lower risk. A risk score incorporating these 4 biomarkers was derived in FINRISK. Risk prediction estimates were more accurate in the 2 validation cohorts (relative integrated discrimination improvement, 8.8% and 4.3%), albeit discrimination was not enhanced. Risk classification was particularly improved for persons in the 5% to 10% risk range (net reclassification, 27.1% and 15.5%). Biomarker associations were further corroborated with mass spectrometry in FINRISK (n=671) and the Framingham Offspring Study (n=2289). Conclusions— Metabolite profiling in large prospective cohorts identified phenylalanine, monounsaturated fatty acids, and polyunsaturated fatty acids as biomarkers for cardiovascular risk. This study substantiates the value of high-throughput metabolomics for biomarker discovery and improved risk assessment. # CLINICAL PERSPECTIVE {#article-title-51}


Circulation-cardiovascular Genetics | 2015

Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Cardiovascular Epidemiology and Genetics

Pasi Soininen; Antti J. Kangas; Peter Würtz; Teemu Suna; Mika Ala-Korpela

Metabolomics is becoming common in epidemiology due to recent developments in quantitative profiling technologies and appealing results from their applications for understanding health and disease. Our team has developed an automated high-throughput serum NMR metabolomics platform that provides quantitative molecular data on 14 lipoprotein subclasses, their lipid concentrations and composition, apolipoprotein A-I and B, multiple cholesterol and triglyceride measures, albumin, various fatty acids as well as on numerous low-molecular-weight metabolites, including amino acids, glycolysis related measures and ketone bodies. The molar concentrations of these measures are obtained from a single serum sample with costs comparable to standard lipid measurements. We have analyzed almost 250 000 samples from around 100 epidemiological cohorts and biobanks and the new international set-up of multiple platforms will allow an annual throughput of more than 250 000 samples. The molecular data have been used to study type 1 and type 2 diabetes etiology as well as to characterize the molecular reflections of the metabolic syndrome, long-term physical activity, diet and lipoprotein metabolism. The results have revealed new biomarkers for early atherosclerosis, type 2 diabetes, diabetic nephropathy, cardiovascular disease and all-cause mortality. We have also combined genomics and metabolomics in diverse studies. We envision that quantitative high-throughput NMR metabolomics will be incorporated as a routine in large biobanks; this would make perfect sense both from the biological research and cost point of view - the standard output of over 200 molecular measures would vastly extend the relevance of the sample collections and make many separate clinical chemistry assays redundant.


Circulation-cardiovascular Genetics | 2012

Genome-Wide Screen for Metabolic Syndrome Susceptibility Loci Reveals Strong Lipid Gene Contribution But No Evidence for Common Genetic Basis for Clustering of Metabolic Syndrome Traits

Kati Kristiansson; Markus Perola; Emmi Tikkanen; Johannes Kettunen; Ida Surakka; Aki S. Havulinna; Alena Stančáková; C. Barnes; Elisabeth Widen; Eero Kajantie; Johan G. Eriksson; Jorma Viikari; Mika Kähönen; Terho Lehtimäki; Olli T. Raitakari; Anna-Liisa Hartikainen; Aimo Ruokonen; Anneli Pouta; Antti Jula; Antti J. Kangas; Pasi Soininen; Mika Ala-Korpela; Satu Männistö; Pekka Jousilahti; Lori L. Bonnycastle; Marjo-Riitta Järvelin; Johanna Kuusisto; Francis S. Collins; Markku Laakso; Aarno Palotie

Background— Genome-wide association (GWA) studies have identified several susceptibility loci for metabolic syndrome (MetS) component traits, but have had variable success in identifying susceptibility loci to the syndrome as an entity. We conducted a GWA study on MetS and its component traits in 4 Finnish cohorts consisting of 2637 MetS cases and 7927 controls, both free of diabetes, and followed the top loci in an independent sample with transcriptome and nuclear magnetic resonance-based metabonomics data. Furthermore, we tested for loci associated with multiple MetS component traits using factor analysis, and built a genetic risk score for MetS. Methods and Results— A previously known lipid locus, APOA1/C3/A4/A5 gene cluster region (SNP rs964184), was associated with MetS in all 4 study samples (P=7.23×10−9 in meta-analysis). The association was further supported by serum metabolite analysis, where rs964184 was associated with various very low density lipoprotein, triglyceride, and high-density lipoprotein metabolites (P=0.024–1.88×10−5). Twenty-two previously identified susceptibility loci for individual MetS component traits were replicated in our GWA and factor analysis. Most of these were associated with lipid phenotypes, and none with 2 or more uncorrelated MetS components. A genetic risk score, calculated as the number of risk alleles in loci associated with individual MetS traits, was strongly associated with MetS status. Conclusions— Our findings suggest that genes from lipid metabolism pathways have the key role in the genetic background of MetS. We found little evidence for pleiotropy linking dyslipidemia and obesity to the other MetS component traits, such as hypertension and glucose intolerance.


Molecular Systems Biology | 2008

1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death

Ville Petteri Mäkinen; Pasi Soininen; Carol Forsblom; Maija Parkkonen; Petri Ingman; Kimmo Kaski; Per-Henrik Groop; Mika Ala-Korpela

Subtle metabolic changes precede and accompany chronic vascular complications, which are the primary causes of premature death in diabetes. To obtain a multimetabolite characterization of these high‐risk individuals, we measured proton nuclear magnetic resonance (1H NMR) data from the serum of 613 patients with type I diabetes and a diverse spread of complications. We developed a new metabonomics framework to visualize and interpret the data and to link the metabolic profiles to the underlying diagnostic and biochemical variables. Our results indicate complex interactions between diabetic kidney disease, insulin resistance and the metabolic syndrome. We illustrate how a single 1H NMR protocol is able to identify the polydiagnostic metabolite manifold of type I diabetes and how its alterations translate to clinical phenotypes, clustering of micro‐ and macrovascular complications, and mortality during several years of follow‐up. This work demonstrates the diffuse nature of complex vascular diseases and the limitations of single diagnostic biomarkers. However, it also promises cost‐effective solutions through high‐throughput analytics and advanced computational methods, as applied here in a case that is representative of the real clinical situation.


Diabetes | 2012

Hyperglycemia and a Common Variant of GCKR Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men

Alena Stančáková; Mete Civelek; Niyas K. Saleem; Pasi Soininen; Antti J. Kangas; Henna Cederberg; Jussi Paananen; Jussi Pihlajamäki; Lori L. Bonnycastle; Mario A. Morken; Michael Boehnke; Päivi Pajukanta; Aldons J. Lusis; Francis S. Collins; Johanna Kuusisto; Mika Ala-Korpela; Markku Laakso

We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels.


The Lancet Diabetes & Endocrinology | 2015

Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study.

John Chambers; Marie Loh; Benjamin Lehne; Alexander Drong; Jennifer Kriebel; Valeria Motta; Simone Wahl; Hannah R Elliott; Federica Rota; William R. Scott; Weihua Zhang; Sian-Tsung Tan; Gianluca Campanella; Marc Chadeau-Hyam; Loic Yengo; Rebecca C Richmond; Martyna Adamowicz-Brice; Uzma Afzal; Kiymet Bozaoglu; Zuan Yu Mok; Hong Kiat Ng; François Pattou; Holger Prokisch; Michelle Ann Rozario; Letizia Tarantini; James Abbott; Mika Ala-Korpela; Benedetta Albetti; Ole Ammerpohl; Pier Alberto Bertazzi

BACKGROUND Indian Asians, who make up a quarter of the worlds population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.

Collaboration


Dive into the Pasi Soininen's collaboration.

Top Co-Authors

Avatar

Mika Ala-Korpela

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Kettunen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Jorma Viikari

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veikko Salomaa

National Institute for Health and Welfare

View shared research outputs
Researchain Logo
Decentralizing Knowledge