Pasqual Rivera
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pasqual Rivera.
Nature Materials | 2014
Chunming Huang; S. X. Wu; Ana M. Sanchez; Jonathan J. P. Peters; Richard Beanland; Jason Ross; Pasqual Rivera; Wang Yao; David Cobden; Xiaodong Xu
Heterojunctions between three-dimensional (3D) semiconductors with different bandgaps are the basis of modern light-emitting diodes, diode lasers and high-speed transistors. Creating analogous heterojunctions between different 2D semiconductors would enable band engineering within the 2D plane and open up new realms in materials science, device physics and engineering. Here we demonstrate that seamless high-quality in-plane heterojunctions can be grown between the 2D monolayer semiconductors MoSe2 and WSe2. The junctions, grown by lateral heteroepitaxy using physical vapour transport, are visible in an optical microscope and show enhanced photoluminescence. Atomically resolved transmission electron microscopy reveals that their structure is an undistorted honeycomb lattice in which substitution of one transition metal by another occurs across the interface. The growth of such lateral junctions will allow new device functionalities, such as in-plane transistors and diodes, to be integrated within a single atomically thin layer.
Nature Communications | 2015
Pasqual Rivera; John R. Schaibley; Aaron M. Jones; Jason Ross; S. X. Wu; Grant Aivazian; Philip Klement; Kyle Seyler; Genevieve Clark; Nirmal Ghimire; Jiaqiang Yan; D. Mandrus; Wang Yao; Xiaodong Xu
Van der Waals bound heterostructures constructed with two-dimensional materials, such as graphene, boron nitride and transition metal dichalcogenides, have sparked wide interest in device physics and technologies at the two-dimensional limit. One highly coveted heterostructure is that of differing monolayer transition metal dichalcogenides with type-II band alignment, with bound electrons and holes localized in individual monolayers, that is, interlayer excitons. Here, we report the observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by photoluminescence and photoluminescence excitation spectroscopy. We find that their energy and luminescence intensity are highly tunable by an applied vertical gate voltage. Moreover, we measure an interlayer exciton lifetime of ~1.8 ns, an order of magnitude longer than intralayer excitons in monolayers. Our work demonstrates optical pumping of interlayer electric polarization, which may provoke further exploration of interlayer exciton condensation, as well as new applications in two-dimensional lasers, light-emitting diodes and photovoltaic devices.
Science | 2016
Pasqual Rivera; Kyle Seyler; Hongyi Yu; John R. Schaibley; Jiaqiang Yan; D. Mandrus; Wang Yao; Xiaodong Xu
Stacking to prolong valley lifetime In the material MoSe2, which, like graphene, has a two-dimensional honeycomb crystal lattice, the electronic structure has two “valleys.” Electrons can be distinguished by the valley they reside in, making them act as potential information carriers. However, electrons easily lose this information by scattering into the other valley. Rivera et al. placed single layers of MoSe2 and WSe2 on top of each other and shone circularly polarized light on the structure. The light caused excitons—pairs of electrons and holes—to form so that the hole and electron came from the same valley but different layers. The valley-specific character of such excitons persisted far longer than would be possible in a single layer of either material. Science, this issue p. 688 Photoluminescence measurements are used to deduce a valley lifetime of 40 nanoseconds in heterostructures of MoSe2 and WSe2. Heterostructures comprising different monolayer semiconductors provide an attractive setting for fundamental science and device technologies, such as in the emerging field of valleytronics. We realized valley-specific interlayer excitons in monolayer WSe2-MoSe2 vertical heterostructures. We created interlayer exciton spin-valley polarization by means of circularly polarized optical pumping and determined a valley lifetime of 40 nanoseconds. This long-lived polarization enables the visualization of the expansion of a valley-polarized exciton cloud over several micrometers. The spatial pattern of the polarization evolves into a ring with increasing exciton density, a manifestation of valley exciton exchange interactions. Our work introduces van der Waals heterostructures as a promising platform from which to study valley exciton physics.
Nature Nanotechnology | 2015
Kyle Seyler; John R. Schaibley; Pu Gong; Pasqual Rivera; Aaron M. Jones; S. X. Wu; Jiaqiang Yan; David Mandrus; Wang Yao; Xiaodong Xu
Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. Here, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe₂, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an order of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.
Nano Letters | 2017
Jason Ross; Pasqual Rivera; John R. Schaibley; Eric Lee-Wong; Hongyi Yu; Takashi Taniguchi; Kenji Watanabe; Jiaqiang Yan; David Mandrus; David Cobden; Wang Yao; Xiaodong Xu
Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.
Science Advances | 2017
Neil R. Wilson; Paul Nguyen; Kyle Seyler; Pasqual Rivera; Alexander J. Marsden; Zachary P. L. Laker; Gabriel C. Constantinescu; Viktor Kandyba; Alexei Barinov; Nicholas Hine; Xiaodong Xu; David Cobden
Photoemission measurements on exfoliated 2D heterostructures reveal detailed electronic structure and hybridization effects. Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe2/WSe2 heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe2/WSe2 heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures.
APL Materials | 2014
Genevieve Clark; S. X. Wu; Pasqual Rivera; Joe Finney; Paul Nguyen; David Cobden; Xiaodong Xu
Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.
Nature Communications | 2016
John R. Schaibley; Pasqual Rivera; Hongyi Yu; Kyle Seyler; Jiaqiang Yan; David Mandrus; Takashi Taniguchi; Kenji Watanabe; Wang Yao; Xiaodong Xu
Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. Here, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe2–WSe2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weakly dependent on the twist angle between layers. Our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.
Nature Nanotechnology | 2018
Pasqual Rivera; Hongyi Yu; Kyle Seyler; Nathan Wilson; Wang Yao; Xiaodong Xu
Stacking different two-dimensional crystals into van der Waals heterostructures provides an exciting approach to designing quantum materials that can harness and extend the already fascinating properties of the constituents. Heterobilayers of transition metal dichalcogenides are particularly attractive for low-dimensional semiconductor optics because they host interlayer excitons—with electrons and holes localized in different layers—which inherit valley-contrasting physics from the monolayers and thereby possess various novel and appealing properties compared to other solid-state nanostructures. This Review presents the contemporary experimental and theoretical understanding of these interlayer excitons. We discuss their unique optical properties arising from the underlying valley physics, the strong many-body interactions and electrical control resulting from the electric dipole moment, and the unique effects of a moiré superlattice on the interlayer exciton potential landscape and optical properties.This Review discusses the contemporary experimental and theoretical understanding of interlayer excitons in heterobilayers of transition metal dichalcogenides.
Proceedings of SPIE | 2017
Arka Majumdar; Taylor K. Fryett; Chang Hua Liu; Jiajiu Zheng; S. X. Wu; Pasqual Rivera; Kyle Syler; Genevieve Clark; Xiaodong Xu
2D semiconductors have recently emerged as promising optoelectronic materials, with high quantum efficiency of photoemission, absorption and nonlinear optical properties. With significant progress in understanding the material science of these atomically thin materials, and building devices with stand-alone monolayer materials, it is an opportune time to integrate these materials with existing optoelectronic platform to realize the full potential of the 2D materials. Here, we highlight our recent progress in 2D semiconductor integrated with nanophotonic resonators. Specifically, we report the operation of an optically pumped laser, cavity enhanced electroluminescence and cavity enhanced second harmonic generation.