Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasquale Bianco is active.

Publication


Featured researches published by Pasquale Bianco.


Cell | 2007

Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size.

Gabriella Piazzesi; Massimo Reconditi; Marco Linari; Leonardo Lucii; Pasquale Bianco; Elisabetta Brunello; Valérie Decostre; Alex Stewart; David B. Gore; Thomas C. Irving; Malcolm Irving; Vincenzo Lombardi

Skeletal muscle can bear a high load at constant length, or shorten rapidly when the load is low. This force-velocity relationship is the primary determinant of muscle performance in vivo. Here we exploited the quasi-crystalline order of myosin II motors in muscle filaments to determine the molecular basis of this relationship by X-ray interference and mechanical measurements on intact single cells. We found that, during muscle shortening at a wide range of velocities, individual myosin motors maintain a force of about 6 pN while pulling an actin filament through a 6 nm stroke, then quickly detach when the motor reaches a critical conformation. Thus we show that the force-velocity relationship is primarily a result of a reduction in the number of motors attached to actin in each filament in proportion to the filament load. These results explain muscle performance and efficiency in terms of the molecular mechanism of the myosin motor.


The Journal of Physiology | 2006

Structural changes in the myosin filament and cross‐bridges during active force development in single intact frog muscle fibres: stiffness and X‐ray diffraction measurements

Elisabetta Brunello; Pasquale Bianco; Gabriella Piazzesi; Marco Linari; Massimo Reconditi; Pierre Panine; Theyencheri Narayanan; W.I. Helsby; Malcolm Irving; Vincenzo Lombardi

Structural and mechanical changes occurring in the myosin filament and myosin head domains during the development of the isometric tetanus have been investigated in intact frog muscle fibres at 4°C and 2.15 μm sarcomere length, using sarcomere level mechanics and X‐ray diffraction at beamline ID2 of the European Synchrotron Radiation Facility (Grenoble, France). The time courses of changes in both the M3 and M6 myosin‐based reflections were recorded with 5 ms frames using the gas‐filled RAPID detector (MicroGap Technology). Following the end of the latent period (11 ms after the start of stimulation), force increases to the tetanus plateau value (T0) with a half‐time of 40 ms, and the spacings of the M3 and M6 reflections (SM3 and SM6) increase by 1.5% from their resting values, with time courses that lead that of force by ∼10 and ∼20 ms, respectively. These temporal relations are maintained when the increase of force is delayed by ∼10 ms by imposing, from 5 ms after the first stimulus, 50 nm (half‐sarcomere)−1 shortening at the velocity (V0) that maintains zero force. Shortening at V0 transiently reduces SM3 following the latent period and delays the subsequent increase in SM3, but only delays the SM6 increase without a transient decrease. Shortening at V0 imposed at the tetanus plateau causes an abrupt reduction of the intensity of the M3 reflection (IM3), whereas the intensity of the M6 reflection (IM6) is only slightly reduced. The changes in half‐sarcomere stiffness indicate that the isometric force at each time point is proportional to the number of myosin heads bound to actin. The different sensitivities of the intensity and spacing of the M3 and M6 reflections to the mechanical responses support the view that the M3 reflection in active muscle originates mainly from the myosin heads attached to the actin filament and the M6 reflection originates mainly from a fixed structure in the myosin filament signalling myosin filament length changes during the tetanus rise.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Motion of myosin head domains during activation and force development in skeletal muscle

Massimo Reconditi; Elisabetta Brunello; Marco Linari; Pasquale Bianco; Theyencheri Narayanan; Pierre Panine; Gabriella Piazzesi; Vincenzo Lombardi; Malcolm Irving

Muscle contraction is driven by a change in the structure of the head domain of myosin, the “working stroke” that pulls the actin filaments toward the midpoint of the myosin filaments. This movement of the myosin heads can be measured very precisely in intact muscle cells by X-ray interference, but until now this technique has not been applied to physiological activation and force generation following electrical stimulation of muscle cells. By using this approach, we show that the long axes of the myosin head domains are roughly parallel to the filaments in resting muscle, with their center of mass offset by approximately 7 nm from the C terminus of the head domain. The observed mass distribution matches that seen in electron micrographs of isolated myosin filaments in which the heads are folded back toward the filament midpoint. Following electrical stimulation, the heads move by approximately 10 nm away from the filament midpoint, in the opposite direction to the working stroke. The time course of this motion matches that of force generation, but is slower than the other structural changes in the myosin filaments on activation, including the loss of helical and axial order of the myosin heads and the change in periodicity of the filament backbone. The rate of force development is limited by that of attachment of myosin heads to actin in a conformation that is the same as that during steady-state isometric contraction; force generation in the actin-attached head is fast compared with the attachment step.


Biophysical Journal | 2011

PicoNewton-Millisecond Force Steps Reveal the Transition Kinetics and Mechanism of the Double-Stranded DNA Elongation

Pasquale Bianco; Lorenzo Bongini; Luca Melli; Mario Dolfi; Vincenzo Lombardi

We study the kinetics of the overstretching transition in λ-phage double-stranded (ds) DNA from the basic conformation (B state) to the 1.7-times longer and partially unwound conformation (S state), using the dual-laser optical tweezers under force-clamp conditions at 25°C. The unprecedented resolution of our piezo servo-system, which can impose millisecond force steps of 0.5-2 pN, reveals the exponential character of the elongation kinetics and allows us to test the two-state nature of the B-S transition mechanism. By analyzing the load-dependence of the rate constant of the elongation, we find that the elementary elongation step is 5.85 nm, indicating a cooperativity of ~25 basepairs. This mechanism increases the free energy for the elementary reaction to ~94 k(B)T, accounting for the stability of the basic conformation of DNA, and explains why ds-DNA can remain in equilibrium as it overstretches.


The Journal of Physiology | 2009

Structural changes in myosin motors and filaments during relaxation of skeletal muscle

Elisabetta Brunello; Luca Fusi; Massimo Reconditi; Marco Linari; Pasquale Bianco; Pierre Panine; Theyencheri Narayanan; Gabriella Piazzesi; Vincenzo Lombardi; Malcolm Irving

Structural changes in myosin motors and filaments during relaxation from short tetanic contractions of intact single fibres of frog tibialis anterior muscles at sarcomere length 2.14 μm, 4°C were investigated by X‐ray diffraction. Force declined at a steady rate for several hundred milliseconds after the last stimulus, while sarcomere lengths remained almost constant. During this isometric phase of relaxation the intensities of the equatorial and meridional M3 X‐ray reflections associated with the radial and axial distributions of myosin motors also recovered at a steady rate towards their resting values, consistent with progressive net detachment of myosin motors from actin filaments. Stiffness measurements confirmed that the fraction of motors attached to actin declined at a constant rate, but also revealed a progressive increase in force per motor. The interference fine structure of the M3 reflection suggested that actin‐attached myosin motors are displaced towards the start of their working stroke during isometric relaxation. There was negligible recovery of the intensities of the meridional and layer‐line reflections associated with the quasi‐helical distribution of myosin motors in resting muscle during isometric relaxation, and the 1.5% increase in the axial periodicity of the myosin filament associated with muscle activation was not reversed. When force had decreased to roughly half its tetanus plateau value, the isometric phase of relaxation abruptly ended, and the ensuing chaotic relaxation had an exponential half‐time of ca 60 ms. Recovery of the equatorial X‐ray intensities was largely complete during chaotic relaxation, but the other X‐ray signals recovered more slowly than force.


Nucleic Acids Research | 2014

Transient kinetics measured with force steps discriminate between double-stranded DNA elongation and melting and define the reaction energetics

Lorenzo Bongini; Luca Melli; Vincenzo Lombardi; Pasquale Bianco

Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10–25°C). The shortening transient following a 20–35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2–35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition.


The Journal of Physiology | 2017

Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.

Luca Fusi; Valentina Percario; Elisabetta Brunello; Marco Caremani; Pasquale Bianco; Joseph D. Powers; Massimo Reconditi; Vincenzo Lombardi; Gabriella Piazzesi

Myosin filament mechanosensing determines the efficiency of the contraction by adapting the number of switched ON motors to the load. Accordingly, the unloaded shortening velocity (V0) is already set at the end of latency relaxation (LR), ∼10 ms after the start of stimulation, when the myosin filament is still in the OFF state. Here the number of actin‐attached motors per half‐myosin filament (n) during V0 shortening imposed either at the end of LR or at the plateau of the isometric contraction is estimated from the relation between half‐sarcomere compliance and force during the force redevelopment after shortening. The value of n decreases progressively with shortening and, during V0 shortening starting at the end of LR, is 1–4. Reduction of n is accounted for by a constant duty ratio of 0.05 and a parallel switching OFF of motors, explaining the very low rate of ATP utilization found during unloaded shortening.


Journal of Cell Science | 2014

Low-force transitions in single titin molecules reflect a memory of contractile history

Zsolt Mártonfalvi; Pasquale Bianco; Marco Linari; Marco Caremani; Attila Nagy; Vincenzo Lombardi; Miklós Kellermayer

ABSTRACT Titin is a giant elastomeric muscle protein that has been suggested to function as a sensor of sarcomeric stress and strain, but the mechanisms by which it does so are unresolved. To gain insight into its mechanosensory function we manipulated single titin molecules with high-resolution optical tweezers. Discrete, step-wise transitions, with rates faster than canonical Ig domain unfolding occurred during stretch at forces as low as 5 pN. Multiple mechanisms and molecular regions (PEVK, proximal tandem-Ig, N2A) are likely to be involved. The pattern of transitions is sensitive to the history of contractile events. Monte-Carlo simulations of our experimental results predicted that structural transitions begin before the complete extension of the PEVK domain. High-resolution atomic force microscopy (AFM) supported this prediction. Addition of glutamate-rich PEVK domain fragments competitively inhibited the viscoelastic response in both single titin molecules and muscle fibers, indicating that PEVK domain interactions contribute significantly to sarcomere mechanics. Thus, under non-equilibrium conditions across the physiological force range, titin extends by a complex pattern of history-dependent discrete conformational transitions, which, by dynamically exposing ligand-binding sites, could set the stage for the biochemical sensing of the mechanical status of the sarcomere.


Biophysical Journal | 2015

Titin Domains Progressively Unfolded by Force Are Homogenously Distributed along the Molecule

Pasquale Bianco; Zsolt Mártonfalvi; Katalin Naftz; Dorina Kőszegi; Miklós Kellermayer

Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecules length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.


Journal of the Royal Society Interface | 2014

The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics

Lorenzo Bongini; Vincenzo Lombardi; Pasquale Bianco

The overstretching transition in torsionally unconstrained DNA is studied by means of atomistic molecular dynamics simulations. The free-energy profile as a function of the length of the molecule is determined through the umbrella sampling technique providing both a thermodynamic and a structural characterization of the transition pathway. The zero-force free-energy profile is monotonic but, in accordance with recent experimental evidence, becomes two-state at high forces. A number of experimental results are satisfactorily predicted: (i) the entropic and enthalpic contributions to the free-energy difference between the basic (B) state and the extended (S) state; (ii) the longitudinal extension of the transition state and (iii) the enthalpic contribution to the transition barrier. A structural explanation of the experimental finding that overstretching is a cooperative reaction characterized by elementary units of approximately 22 base pairs is found in the average distance between adenine/thymine-rich regions along the molecule. The overstretched DNA adopts a highly dynamical and structurally disordered double-stranded conformation which is characterized by residual base pairing, formation of non-native intra-strand hydrogen bonds and effective hydrophobic screening of apolar regions.

Collaboration


Dive into the Pasquale Bianco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Melli

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge