Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasquale Scarcia is active.

Publication


Featured researches published by Pasquale Scarcia.


The EMBO Journal | 2001

Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter

Luigi Palmieri; Hanspeter Rottensteiner; Wolfgang Girzalsky; Pasquale Scarcia; Ferdinando Palmieri; Ralf Erdmann

The requirement for small molecule transport systems across the peroxisomal membrane has previously been postulated, but not directly proven. Here we report the identification and functional reconstitution of Ant1p (Ypr128cp), a peroxisomal transporter in the yeast Saccharomyces cerevisiae, which has the characteristic sequence features of the mitochondrial carrier family. Ant1p was found to be an integral protein of the peroxisomal membrane and expression of ANT1 was oleic acid inducible. Targeting of Ant1p to peroxisomes was dependent on Pex3p and Pex19p, two peroxins specifically required for peroxisomal membrane protein insertion. Ant1p was essential for growth on medium‐chain fatty acids as the sole carbon source. Upon reconstitution of the overexpressed and purified protein into liposomes, specific transport of adenine nucleotides could be demonstrated. Remarkably, both the substrate and inhibitor specificity differed from those of the mitochondrial ADP/ATP transporter. The physiological role of Ant1p in S.cerevisiae is probably to transport cytoplasmic ATP into the peroxisomal lumen in exchange for AMP generated in the activation of fatty acids.


FEBS Letters | 2005

A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution.

Vincenza Dolce; Pasquale Scarcia; Domenico Iacopetta; Ferdinando Palmieri

The mitochondrial ADP/ATP carriers (AACs) catalyze the exchange of cytosolic ADP for matrix ATP. We have identified and characterized a novel member of the AAC subfamily of mitochondrial metabolite transport proteins, termed AAC4. The AAC4 gene maps to human chromosome 4q28.1, and its product AAC4 is 66–68% identical to human AAC 1–3 and is localized to mitochondria. AAC4 transcripts are exclusively present in liver, testis and brain unlike those of AAC 1–3. Consistent with its belonging to the AAC subfamily, upon heterologous expression and reconstitution into liposomes AAC4 exchanges ADP for ATP by an electrogenic antiport mechanism with high specificity and high sensitivity to carboxyatractyloside and bongkrekic acid.


Proceedings of the National Academy of Sciences of the United States of America | 2014

UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation

Angelo Vozza; Giovanni Parisi; Francesco De Leonardis; Francesco M. Lasorsa; Alessandra Castegna; Daniela Amorese; Raffaele Marmo; Valeria Mariajolanda Calcagnile; Luigi Palmieri; Daniel Ricquier; Eleonora Paradies; Pasquale Scarcia; Ferdinando Palmieri; Frédéric Bouillaud; Giuseppe Fiermonte

Significance Mitochondrial carriers constitute a large family of transport proteins that play important roles in the intracellular translocation of metabolites, nucleotides, and coenzymes. Despite considerable research efforts, the biochemical function of Uncoupling protein 2 (UCP2), a member of the mitochondrial carrier family reported to be involved in numerous pathologies, is still elusive. Here we show that UCP2 catalyzes an exchange of malate, oxaloacetate, and aspartate for phosphate, and that it exports C4 metabolites from mitochondria to the cytosol in vivo. Our findings also provide evidence that UCP2 activity limits mitochondrial oxidation of glucose and enhances glutaminolysis. These results provide a unique regulatory mechanism in cell bioenergetics and explain the significance of UCP2 levels in metabolic reprogramming occurring under various physiopathological conditions. Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA–producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.


Journal of Biological Chemistry | 2010

Identification and Functional Characterization of a Novel Mitochondrial Carrier for Citrate and Oxoglutarate in Saccharomyces cerevisiae

Alessandra Castegna; Pasquale Scarcia; Gennaro Agrimi; Luigi Palmieri; Hanspeter Rottensteiner; Iolanda Spera; Lucrezia Germinario; Ferdinando Palmieri

Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.


Biochemical Journal | 2004

The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in ΔpH formation across peroxisomal membranes

Francesco M. Lasorsa; Pasquale Scarcia; Ralf Erdmann; Ferdinando Palmieri; Hanspeter Rottensteiner; Luigi Palmieri

The yeast peroxisomal adenine nucleotide carrier, Ant1p, was shown to catalyse unidirectional transport in addition to exchange of substrates. In both transport modes, proton movement occurs. Nucleotide hetero-exchange is H+-compensated and electroneutral. Furthermore, microscopic fluorescence imaging of a pH-sensitive green fluorescent protein targeted to peroxisomes shows that Ant1p is involved in the formation of a DeltapH across the peroxisomal membrane, acidic inside.


Journal of Biological Chemistry | 2008

Peroxisomes as Novel Players in Cell Calcium Homeostasis

Francesco M. Lasorsa; Paolo Pinton; Luigi Palmieri; Pasquale Scarcia; Hanspeter Rottensteiner; Rosario Rizzuto; Ferdinando Palmieri

Ca2+ concentration in peroxisomal matrix ([Ca2+]perox) has been monitored dynamically in mammalian cells expressing variants of Ca2+-sensitive aequorin specifically targeted to peroxisomes. Upon stimulation with agonists that induce Ca2+ release from intracellular stores, peroxisomes transiently take up Ca2+ reaching peak values in the lumen as high as 50–100 μm, depending on cell types. Also in resting cells, peroxisomes sustain a Ca2+ gradient, [Ca2+]perox being ∼20-fold higher than [Ca2+] in the cytosol ([Ca2+]cyt). The properties of Ca2+ traffic across the peroxisomal membrane are different from those reported for other subcellular organelles. The sensitivity of peroxisomal Ca2+ uptake to agents dissipating H+ and Na+ gradients unravels the existence of a complex bioenergetic framework including V-ATPase, Ca2+/H+, and Ca2+/Na+ activities whose components are yet to be identified at a molecular level. The different [Ca2+]perox of resting and stimulated cells suggest that Ca2+ could play an important role in the regulation of peroxisomal metabolism.


Journal of Medical Genetics | 2013

Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter

Simon Edvardson; Vito Porcelli; Chaim Jalas; Devorah Soiferman; Yuval Kellner; Avraham Shaag; Stanley H. Korman; Ciro Leonardo Pierri; Pasquale Scarcia; Nitay D. Fraenkel; Reeval Segel; Abraham Schechter; Ayala Frumkin; Ophry Pines; Ann Saada; Luigi Palmieri; Orly Elpeleg

Background Agenesis of corpus callosum has been associated with several defects of the mitochondrial respiratory chain and the citric acid cycle. We now report the results of the biochemical and molecular studies of a patient with severe neurodevelopmental disease manifesting by agenesis of corpus callosum and optic nerve hypoplasia. Methods and results A mitochondrial disease was suspected in this patient based on the prominent excretion of 2-hydroxyglutaric acid and Krebs cycle intermediates in urine and the finding of increased reactive oxygen species content and decreased mitochondrial membrane potential in her fibroblasts. Whole exome sequencing disclosed compound heterozygosity for two pathogenic variants in the SLC25A1 gene, encoding the mitochondrial citrate transporter. These variants, G130D and R282H, segregated in the family and were extremely rare in controls. The mutated residues were highly conserved throughout evolution and in silico modeling investigations indicated that the mutations would have a deleterious effect on protein function, affecting either substrate binding to the transporter or its translocation mechanism. These predictions were validated by the observation that a yeast strain harbouring the mutations at equivalent positions in the orthologous protein exhibited a growth defect under stress conditions and by the loss of activity of citrate transport by the mutated proteins reconstituted into liposomes. Conclusions We report for the first time a patient with a mitochondrial citrate carrier deficiency. Our data support a role for citric acid cycle defects in agenesis of corpus callosum as already reported in patients with aconitase or fumarate hydratase deficiency.


Biochemical and Biophysical Research Communications | 2009

Statins, fibrates and retinoic acid upregulate mitochondrial acylcarnitine carrier gene expression

Vito Iacobazzi; Paolo Convertini; Vittoria Infantino; Pasquale Scarcia; Simona Todisco; Ferdinando Palmieri

In this study, we investigated the effects of statins, fibrates, 9-cis-retinoic acid and forskolin on the transcription of the mitochondrial carnitine/acylcarnitine carrier (CAC) gene. Statins, fibrates, retinoic acid and forskolin activate luciferase gene reporter activity driven by the -334/+3 bp region of the human CAC promoter containing wild-type (but not mutated) PPRE. These four agents also increase CAC transcript and protein levels. The combinations of statins and fibrates, retinoic acid and fibrates and fibrates and forskolin act synergistically. Mevalonate abolishes the activation of CAC gene expression by statins; the inhibitor of the PKA pathway H89 suppresses the stimulation of CAC gene expression by forskolin. Because CAC is essential for fatty acid beta-oxidation, the above results on the regulation of CAC gene expression provide a novel contribution to the understanding of the hypolipidemic action of statins, fibrates and retinoic acid.


Biochemical and Biophysical Research Communications | 2011

Identification of a novel Sp1 splice variant as a strong transcriptional activator

Vittoria Infantino; Paolo Convertini; Francesco Iacobazzi; Isabella Pisano; Pasquale Scarcia; Vito Iacobazzi

The transcription factor Sp1 regulates expression of numerous genes involved in many cellular processes. Different post-transcriptional modifications can influence the transcriptional control activity and stability of Sp1. In addition to these modifications, alternative splicing isoforms may also be the basis of its distinct functional activities. In this study, we identified a novel alternative splice isoform of Sp1 named Sp1c. This variant is generated by exclusion of a short domain, which we designate α, through alternative splice acceptor site usage in the exon 3. The existence of this new isoform was confirmed in vivo by Western blotting analysis. Although at very low levels, Sp1c is ubiquitously expressed, as seen in its full-length Sp1. A preliminary characterization of Sp1c shows that: (a) Sp1c works as stronger activator of transcription than full-length Sp1; (b) percentage of HEK293 Sp1c-overexpressing cells is higher in G1 phase and lower in S phase than percentage of HEK293 Sp1-overexpressing cells.


Journal of neuromuscular diseases | 2014

Mutations in the Mitochondrial Citrate Carrier SLC25A1 are Associated with Impaired Neuromuscular Transmission.

Amina Chaouch; Vito Porcelli; Daniel Cox; Shimon Edvardson; Pasquale Scarcia; Anna De Grassi; Ciro Leonardo Pierri; Judith Cossins; Steven H. Laval; Helen Griffin; Juliane S. Müller; Teresinha Evangelista; Ana Töpf; Angela Abicht; Angela Huebner; Maja von der Hagen; Kate Bushby; Volker Straub; Rita Horvath; Orly Elpeleg; Jacqueline Palace; Jan Senderek; David Beeson; Luigi Palmieri; Hanns Lochmüller

Background and Objective Congenital myasthenic syndromes are rare inherited disorders characterized by fatigable weakness caused by malfunction of the neuromuscular junction. We performed whole exome sequencing to unravel the genetic aetiology in an English sib pair with clinical features suggestive of congenital myasthenia. Methods We used homozygosity mapping and whole exome sequencing to identify the candidate gene variants. Mutant protein expression and function were assessed in vitro and a knockdown zebrafish model was generated to assess neuromuscular junction development. Results We identified a novel homozygous missense mutation in the SLC25A1 gene, encoding the mitochondrial citrate carrier. Mutant SLC25A1 showed abnormal carrier function. SLC25A1 has recently been linked to a severe, often lethal clinical phenotype. Our patients had a milder phenotype presenting primarily as a neuromuscular (NMJ) junction defect. Of note, a previously reported patient with different compound heterozygous missense mutations of SLC25A1 has since been shown to suffer from a neuromuscular transmission defect. Using knockdown of SLC25A1 expression in zebrafish, we were able to mirror the human disease in terms of variable brain, eye and cardiac involvement. Importantly, we show clear abnormalities in the neuromuscular junction, regardless of the severity of the phenotype. Conclusions Based on the axonal outgrowth defects seen in SLC25A1 knockdown zebrafish, we hypothesize that the neuromuscular junction impairment may be related to pre-synaptic nerve terminal abnormalities. Our findings highlight the complex machinery required to ensure efficient neuromuscular function, beyond the proteomes exclusive to the neuromuscular synapse.

Collaboration


Dive into the Pasquale Scarcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge