Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasqualepaolo Pagliaro is active.

Publication


Featured researches published by Pasqualepaolo Pagliaro.


Cancer Research | 2010

Activity of the Novel Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 against T-Cell Acute Lymphoblastic Leukemia

Francesca Chiarini; Cecilia Grimaldi; Francesca Ricci; Pier Luigi Tazzari; Camilla Evangelisti; Andrea Ognibene; Michela Battistelli; Elisabetta Falcieri; Fraia Melchionda; Andrea Pession; Pasqualepaolo Pagliaro; James A. McCubrey; Alberto M. Martelli

Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival, and drug resistance. These observations lend compelling weight to the application of PI3K/Akt/mTOR inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the novel dual PI3K/mTOR inhibitor NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. NVP-BEZ235 was cytotoxic to a panel of T-ALL cell lines as determined by MTT assays. NVP-BEZ235 treatment resulted in cell cycle arrest and apoptosis. Western blots showed a dose- and time-dependent dephosphorylation of Akt and mTORC1 downstream targets in response to NVP-BEZ235. Remarkably, NVP-BEZ235 targeted the side population of both T-ALL cell lines and patient lymphoblasts, which might correspond to leukemia-initiating cells, and synergized with chemotherapeutic agents (cyclophosphamide, cytarabine, dexamethasone) currently used for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by coculturing with MS-5 stromal cells, which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic to T-ALL patient lymphoblasts displaying pathway activation, where the drug dephosphorylated eukaryotic initiation factor 4E-binding protein 1, at variance with rapamycin. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment of those T-ALLs that have aberrant upregulation of this signaling pathway for their proliferation and survival.


Cancer Research | 2009

Dual Inhibition of Class IA Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin as a New Therapeutic Option for T-Cell Acute Lymphoblastic Leukemia

Francesca Chiarini; Federica Falà; Pier Luigi Tazzari; Francesca Ricci; Annalisa Astolfi; Andrea Pession; Pasqualepaolo Pagliaro; James A. McCubrey; Alberto M. Martelli

Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.


Leukemia | 2011

Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia

Cecilia Evangelisti; Francesca Ricci; P L Tazzari; Giovanna Tabellini; Michela Battistelli; E Falcieri; Francesca Chiarini; Roberta Bortul; Fraia Melchionda; Pasqualepaolo Pagliaro; Andrea Pession; James A. McCubrey; A M Martelli

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G0/G1 phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34+/CD7−/CD4−) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Leukemia | 2012

AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications

Cecilia Grimaldi; Francesca Chiarini; Giovanna Tabellini; Francesca Ricci; P L Tazzari; Michela Battistelli; E Falcieri; Roberta Bortul; Fraia Melchionda; Ilaria Iacobucci; Pasqualepaolo Pagliaro; Giovanni Martinelli; Andrea Pession; João T. Barata; James A. McCubrey; A M Martelli

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4+ T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34+/CD7−/CD4−) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.


Leukemia | 2012

Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia.

Carolina Simioni; Luca M. Neri; Giovanna Tabellini; Francesca Ricci; Daniela Bressanin; Francesca Chiarini; Cecilia Evangelisti; Alice Cani; P L Tazzari; Fraia Melchionda; Pasqualepaolo Pagliaro; Andrea Pession; James A. McCubrey; Silvano Capitani; A M Martelli

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G0/G1 phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/β and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34+/CD4−/CD7−), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.


Pediatric Infectious Disease Journal | 2011

Clinical relevance of shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome

Maurizio Brigotti; Pier Luigi Tazzari; Elisa Ravanelli; Domenica Carnicelli; Laura Rocchi; Valentina Arfilli; Gaia Scavia; Fabio Minelli; Francesca Ricci; Pasqualepaolo Pagliaro; Alfonso Ferretti; Carmine Pecoraro; Fabio Paglialonga; Alberto Edefonti; Maria Antonietta Procaccino; Alberto E. Tozzi; Alfredo Caprioli

Background: Intestinal infections with Shiga toxin-producing Escherichia coli (STEC) in children can lead to the hemolytic uremic syndrome (HUS). Shiga toxins (Stx) released in the gut by bacteria enter the blood stream and target the kidney causing endothelial injury. Free toxins have never been detected in the blood of HUS patients, but they have been found on the surface of polymorphonuclear leukocytes (PMN). Methods: With respect to their clinical features, the clinical relevance of the amounts of serum Stx (cytotoxicity assay with human endothelial cells) and PMN-bound Stx (cytofluorimetric assay) in 46 patients with STEC-associated HUS was evaluated. Results: Stx-positive PMN were found in 60% of patients, whereas negligible amounts of free Stx were detected in the sera. Patients with high amounts of Stx on PMN showed preserved or slightly impaired renal function (incomplete form of HUS), whereas cases with low amounts of Stx usually presented evidence of acute renal failure. Conclusions: These observations suggest that the extent of renal damage in children with STEC-associated HUS could depend on the concentration of Stx present on their PMN and presumably delivered by them to the kidney. As previously shown by experimental models from our laboratory, high amounts of Stx could induce a reduced release of cytokines by the renal endothelium, with a consequent lower degree of inflammation. Conversely, low toxin amounts can trigger the cytokine cascade, provoking inflammation, thereby leading to tissue damage.


Cytotherapy | 2010

Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics.

Gianandrea Pasquinelli; Annalisa Pacilli; Francesco Alviano; Laura Foroni; Francesca Ricci; Sabrina Valente; Catia Orrico; Giacomo Lanzoni; Marina Buzzi; Pier Luigi Tazzari; Pasqualepaolo Pagliaro; Andrea Stella; Gian Paolo Bagnara

BACKGROUND AIMS The presence of ectopic tissues in the pathologic artery wall raises the issue of whether multipotent stem cells may reside in the vasculature itself. Recently mesenchymal stromal cells (MSC) have been isolated from different human vascular segments (VW MSC), belying the previous view that the vessel wall is a relatively quiescent tissue. METHODS Resident multipotent cells were recovered from fresh arterial segments (aortic arches, thoracic and femoral arteries) collected in a tissue-banking facility and used to establish an in situ and in vitro study of the stemness features and multipotency of these multidistrict MSC populations. RESULTS Notch-1+, Stro-1+, Sca-1+ and Oct-4+ cells were distributed along an arterial wall vasculogenic niche. Multidistrict VW MSC homogeneously expressed markers of stemness (Stro-1, Notch-1 and Oct-4) and MSC lineages (CD44, CD90, CD105, CD73, CD29 and CD166) whilst they were negative for hematopoietic and endothelial markers (CD34, CD45, CD31 and vWF). Each VW MSC population had characteristics of stem cells, i.e. a high efflux capability for Hoechst 33342 dye and the ability to form spheroids when grown in suspension and generate colonies when seeded at low density. Again, VW MSC cultured in induction media exhibited adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic differentiation, as documented by histochemical, immunohistochemical, molecular and electron microscopy analysis. CONCLUSIONS Overall, these findings may enlighten the physiopathologic mechanisms of vascular wall diseases as well as having potential implications for cellular, genetic and tissue engineering approaches to treating vascular pathologies when these are unresponsive to medical and surgical therapies.


Journal of Cellular Physiology | 2011

Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia

Camilla Evangelisti; Francesca Ricci; Tazzari Pl; Francesca Chiarini; Michela Battistelli; Elisabetta Falcieri; Andrea Ognibene; Pasqualepaolo Pagliaro; Lucio Cocco; James A. McCubrey; Alberto M. Martelli

Over the past 20 years, survival rates of T‐cell acute lymphoblastic leukemia (T‐ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T‐ALL cells. One such network is represented by the phosphatidylinositol 3‐kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T‐ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T‐ALL cell lines. Triciribine caused cell cycle arrest and caspase‐dependent apoptosis. Western blots demonstrated a dose‐dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine‐induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T‐ALL patients, and targeted the side population of T‐ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T‐ALL cells requiring upregulation of this signaling pathway for their proliferation and survival. J. Cell. Physiol. 226: 822–831, 2011.


Leukemia | 2014

Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential

Luca M. Neri; Alice Cani; A M Martelli; Carolina Simioni; C Junghanss; Giovanna Tabellini; Francesca Ricci; P L Tazzari; Pasqualepaolo Pagliaro; James A. McCubrey; Silvano Capitani

B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.


Leukemia | 2014

Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia.

Annalisa Lonetti; I Antunes; Francesca Chiarini; Ester Orsini; Francesca Buontempo; Francesca Ricci; P L Tazzari; Pasqualepaolo Pagliaro; Fraia Melchionda; Andrea Pession; Alice Bertaina; F Locatelli; James A. McCubrey; João T. Barata; A M Martelli

Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.

Collaboration


Dive into the Pasqualepaolo Pagliaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge