Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pat P. Ongusaha is active.

Publication


Featured researches published by Pat P. Ongusaha.


Nature | 2008

Phosphoinositide signalling links O -GlcNAc transferase to insulin resistance

Xiaoyong Yang; Pat P. Ongusaha; Philip D. Miles; Joyce C. Havstad; Fengxue Zhang; W. Venus So; Jeffrey E. Kudlow; Robert H. Michell; Jerrold M. Olefsky; Seth J. Field; Ronald M. Evans

Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.


Nature | 2010

Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development

Hank H. Qi; Madathia Sarkissian; Gang Qing Hu; Zhibin Wang; Arindam Bhattacharjee; D. Benjamin Gordon; Michelle Gonzales; Fei Lan; Pat P. Ongusaha; Maite Huarte; Nasser K. Yaghi; Hui-Jun Lim; Benjamin A. Garcia; Leonardo Brizuela; Keji Zhao; Thomas M. Roberts; Yang Shi

X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing protein and its mutations have been found in patients with XLMR and craniofacial deformities. Here we provide multiple lines of evidence establishing PHF8 as the first mono-methyl histone H4 lysine 20 (H4K20me1) demethylase, with additional activities towards histone H3K9me1 and me2. PHF8 is located around the transcription start sites (TSS) of ∼7,000 RefSeq genes and in gene bodies and intergenic regions (non-TSS). PHF8 depletion resulted in upregulation of H4K20me1 and H3K9me1 at the TSS and H3K9me2 in the non-TSS sites, respectively, demonstrating differential substrate specificities at different target locations. PHF8 positively regulates gene expression, which is dependent on its H3K4me3-binding PHD and catalytic domains. Importantly, patient mutations significantly compromised PHF8 catalytic function. PHF8 regulates cell survival in the zebrafish brain and jaw development, thus providing a potentially relevant biological context for understanding the clinical symptoms associated with PHF8 patients. Lastly, genetic and molecular evidence supports a model whereby PHF8 regulates zebrafish neuronal cell survival and jaw development in part by directly regulating the expression of the homeodomain transcription factor MSX1/MSXB, which functions downstream of multiple signalling and developmental pathways. Our findings indicate that an imbalance of histone methylation dynamics has a critical role in XLMR.


Nature | 2008

Prolyl 4-hydroxylation regulates Argonaute 2 stability

Hank H. Qi; Pat P. Ongusaha; Johanna Myllyharju; Dongmei Cheng; Outi Pakkanen; Yujiang Shi; Sam W. Lee; Junmin Peng; Yang Shi

Human Argonaute (Ago) proteins are essential components of the RNA-induced silencing complexes (RISCs). Argonaute 2 (Ago2) has a P-element-induced wimpy testis (PIWI) domain, which folds like RNase H and is responsible for target RNA cleavage in RNA interference. Proteins such as Dicer, TRBP, MOV10, RHA, RCK/p54 and KIAA1093 associate with Ago proteins and participate in small RNA processing, RISC loading and localization of Ago proteins in the cytoplasmic messenger RNA processing bodies. However, mechanisms that regulate RNA interference remain obscure. Here we report physical interactions between Ago2 and the α-(P4H-α(I)) and β-(P4H-β) subunits of the type I collagen prolyl-4-hydroxylase (C-P4H(I)). Mass spectrometric analysis identified hydroxylation of the endogenous Ago2 at proline 700. In vitro, both Ago2 and Ago4 seem to be more efficiently hydroxylated than Ago1 and Ago3 by recombinant human C-P4H(I). Importantly, human cells depleted of P4H-α(I) or P4H-β by short hairpin RNA and P4H-α(I) null mouse embryonic fibroblast cells showed reduced stability of Ago2 and impaired short interfering RNA programmed RISC activity. Furthermore, mutation of proline 700 to alanine also resulted in destabilization of Ago2, thus linking Ago2 P700 and hydroxylation at this residue to its stability regulation. These findings identify hydroxylation as a post-translational modification important for Ago2 stability and effective RNA interference.


Cancer Research | 2004

HB-EGF is a potent inducer of tumor growth and angiogenesis.

Pat P. Ongusaha; Jennifer C. Kwak; Andrew J. Zwible; Salvador Macip; Shigeki Higashiyama; Naoyuki Taniguchi; Li Fang; Sam W. Lee

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been shown to stimulate the growth of a variety of cells in an autocrine or paracrine manner. Although HB-EGF is widely expressed in tumors compared with normal tissue, its contribution to tumorigenicity is unknown. HB-EGF can be produced as a membrane-anchored form (pro-HB-EGF) and later processed to a soluble form (s-HB-EGF), although a significant amount of pro-HB-EGF remains uncleaved on the cell surface. To understand the roles of two forms of HB-EGF in promoting tumor growth, we have studied the effects of HB-EGF expression in the process of tumorigenesis using in vitro and in vivo systems. We demonstrate here that in EJ human bladder cancer cells containing a tetracycline-regulatable s-HB-EGF or pro-HB-EGF expression system, s-HB-EGF expression increased their transformed phenotypes, including growth rate, colony-forming ability, and activation of cyclin D1 promoter, as well as induction of vascular endothelial growth factor in vitro. Moreover, s-HB-EGF or wild-type HB-EGF induced the expression and activities of the metalloproteases, MMP-9 and MMP-3, leading to enhanced cell migration. In vivo studies also demonstrated that tumor cells expressing s-HB-EGF or wild-type HB-EGF significantly enhanced tumorigenic potential in athymic nude mice and exerted an angiogenic effect, increasing the density and size of tumor blood vessels. However, cells expressing solely pro-HB-EGF did not exhibit any significant tumorigenic potential. These findings establish s-HB-EGF as a potent inducer of tumor growth and angiogenesis and suggest that therapeutic intervention aimed at the inhibition of s-HB-EGF functions may be useful in cancer treatment.


The EMBO Journal | 2002

p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis

Jeong A. Han; Jong Il Kim; Pat P. Ongusaha; Daniel H. Hwang; Leslie R. Ballou; Alka Mahale; Stuart A. Aaronson; Sam W. Lee

The identification of transcriptional targets of the tumor suppressor p53 is crucial in understanding mechanisms by which it affects cellular outcomes. Through expression array analysis, we identified cyclooxygenase 2 (Cox‐2), whose expression was inducible by wild‐type p53 and DNA damage. We also found that p53‐induced Cox‐2 expression results from p53‐mediated activation of the Ras/Raf/MAPK cascade, as demonstrated by suppression of Cox‐2 induction in response to p53 by dominant‐negative Ras or Raf1 mutants. Furthermore, heparin‐binding epidermal growth factor‐like growth factor (HB‐ EGF), a p53 downstream target gene, induced Cox‐2 expression, implying that Cox‐2 is an ultimate effector in the p53→HB‐EGF→Ras/Raf/MAPK→Cox‐2 pathway. p53‐induced apoptosis was enhanced greatly in Cox‐2 knock‐out cells as compared with wild‐type cells, suggesting that Cox‐2 has an abrogating effect on p53‐induced apoptosis. Also, a selective Cox‐2 inhibitor, NS‐398, significantly enhanced genotoxic stress‐induced apoptosis in several types of p53+/+ normal human cells, through a caspase‐dependent pathway. Together, these results demonstrate that Cox‐2 is induced by p53‐mediated activation of the Ras/Raf/ERK cascade, counteracting p53‐mediated apoptosis. This anti‐apoptosis effect may be a mechanism to abate cellular stresses associated with p53 induction.


The EMBO Journal | 2003

p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop.

Pat P. Ongusaha; Jong-Il Kim; Li Fang; Tai W. Wong; George D. Yancopoulos; Stuart A. Aaronson; Sam W. Lee

DDR1, discoidin domain receptor 1, belongs to a subfamily of tyrosine kinase receptors with an extracellular domain homologous to Dictyostellium discoideum protein discoidin 1. We showed that DDR1 is a direct p53 transcriptional target, and that DNA damage induced a p53‐dependent DDR1 response associated with activation of its tyrosine kinase. We further demonstrated that DDR1 activated the MAPK cascade in a Ras‐dependent manner. Whereas levels of p53, phosphoserine‐15 p53, p21, ARF and Bcl‐XL were increased in response to exogenous overexpression of activated DDR1, dominant‐negative DDR1 inhibited irradiation‐induced MAPK activation and p53, phosphoserine‐15 p53, as well as induced p21 and DDR1 levels, suggesting that DDR1 functions in a feedforward loop to increase p53 levels and at least some of its effectors. Nonetheless, inhibition of DDR1 function resulted in strikingly increased apoptosis of wild‐type p53‐containing cells in response to genotoxic stress through a caspase‐dependent pathway. These results strongly imply that this p53 response gene must predominately act to alleviate the adverse effects of stress induced by p53 on its target cell.


PLOS ONE | 2012

Folliculin, the Product of the Birt-Hogg-Dube Tumor Suppressor Gene, Interacts with the Adherens Junction Protein p0071 to Regulate Cell-Cell Adhesion

Douglas A. Medvetz; Damir Khabibullin; Venkatesh Hariharan; Pat P. Ongusaha; Elena A. Goncharova; Tanja Schlechter; Thomas N. Darling; Ilse Hofmann; Vera P. Krymskaya; James K. Liao; Hayden Huang; Elizabeth P. Henske

Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhdflox/flox mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.


Molecular Cell | 2009

GAMT, a p53-Inducible Modulator of Apoptosis, Is Critical for the Adaptive Response to Nutrient Stress

Takao Ide; Lauren Brown-Endres; Kiki Chu; Pat P. Ongusaha; Takao Ohtsuka; Wafik S. El-Deiry; Stuart A. Aaronson; Sam W. Lee

The p53 tumor suppressor protein has a well-established role in cell-fate decision-making processes. However, recent discoveries indicate that p53 has a non-tumor-suppressive role. Here we identify guanidinoacetate methyltransferase (GAMT), an enzyme involved in creatine synthesis, as a p53 target gene and a key downstream effector of adaptive response to nutrient stress. We show that GAMT is not only involved in p53-dependent apoptosis in response to genotoxic stress but is important for apoptosis induced by glucose deprivation. Additionally, p53-->GAMT upregulates fatty acid oxidation (FAO) induced by glucose starvation, utilizing this pathway as an alternate ATP-generating energy source. These results highlight that p53-dependent regulation of GAMT allows cells to maintain energy levels sufficient to undergo apoptosis or survival under conditions of nutrient stress. The p53-->GAMT pathway represents a new link between cellular stress responses and processes of creatine synthesis and FAO, demonstrating a further role of p53 in cellular metabolism.


Oncogene | 2003

BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest

Pat P. Ongusaha; Toru Ouchi; Kyung Tae Kim; Emily Nytko; Jennifer C. Kwak; Rosemary B. Duda; Chu-Xia Deng; Sam W. Lee

The tumor suppressor protein BRCA1 has been shown to enhance p53 transcription, whereas activated p53 represses BRCA1 transcription. To further understand the functional interaction of these proteins, we investigated the role of BRCA1 in p53-induced phenotypes. We found that BRCA1 when subjected to forced expression acts synergistically with wild-type p53, resulting in irreversible growth arrest, as shown by VhD mouse fibroblast cells expressing a temperature-sensitive mutant of p53. Furthermore, reintroduction of both BRCA1 and p53 into BRCA1(−/−)/p53(−/−) mouse embryonic fibroblasts markedly increased the senescence phenotype compared to that induced by p53 alone. In particular, we found that BRCA1 expression attenuated p53-mediated cell death in response to γ-irradiation. Moreover, microarray screening of 11 000 murine genes demonstrated that a set of genes upregulated by p53 is enhanced by coexpression of BRCA1 and p53, suggesting that BRCA1 and p53 exert a promoter selectivity leading to a specific phenotype. Taken together, our results provide evidence that BRCA1 is involved in p53-mediated growth suppression rather than apoptosis.


Cancer Research | 2006

Discoidin Domain Receptor 1 Receptor Tyrosine Kinase Induces Cyclooxygenase-2 and Promotes Chemoresistance through Nuclear Factor-κB Pathway Activation

Sanjeev Das; Pat P. Ongusaha; Yoon Sun Yang; Jin-Mo Park; Stuart A. Aaronson; Sam W. Lee

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by various types of collagens and is known to play a role in cell attachment, migration, survival, and proliferation. However, little is known about the molecular mechanism(s) underlying the role of DDR1 in cancer. We report here that DDR1 induces cyclooxygenase-2 (Cox-2) expression resulting in enhanced chemoresistance. Depletion of DDR1-mediated Cox-2 induction using short hairpin RNA (shRNA) results in increased chemosensitivity. We also show that DDR1 activates the nuclear factor-kappaB (NF-kappaB) pathway and blocking this activation by an I kappaB superrepressor mutant results in the ablation of DDR1-induced Cox-2, leading to enhanced chemosensitivity, indicating that DDR1-mediated Cox-2 induction is NF-kappaB dependent. We identify the upstream activating kinases of the NF-kappaB pathway, IKK beta and IKK gamma, as essential for DDR1-mediated NF-kappaB activation, whereas IKK alpha seems to be dispensable. Finally, shRNA-mediated inhibition of DDR1 expression significantly enhanced chemosensitivity to genotoxic drugs in breast cancer cells. Thus, DDR1 signaling provides a novel target for therapeutic intervention with the prosurvival/antiapoptotic machinery of tumor cells.

Collaboration


Dive into the Pat P. Ongusaha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart A. Aaronson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Bum Kim

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kunzhong Zhang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Ouchi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge