Patanjali Kambhampati
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patanjali Kambhampati.
Chemical Society Reviews | 1998
Alan Campion; Patanjali Kambhampati
We present an introduction to surface-enhanced Raman scattering (SERS) which reviews the basic experimental facts and the essential features of the mechanisms which have been proposed to account for the observations. We then review very recent fundamental developments which include: SERS from single particles and single molecules; SERS from fractal clusters and surfaces; and new insights into the chemical enhancement mechanism of SERS.
Journal of Chemical Physics | 1998
Patanjali Kambhampati; C. M. Child; Michelle Foster; Alan Campion
We have investigated the chemical mechanism of surface enhanced Raman scattering (SERS) on an atomically smooth metal surface using electron energy loss spectroscopy (EELS) and molecular spectroscopy simulations. The EEL spectra of pyromellitic dianhydride (PMDA) adsorbed on Cu(100) and Cu(111) are reported. Simulations of the surface-enhanced Raman spectra and electron energy loss spectra (EELS) of pyromellitic dianhydride adsorbed on Cu(100) and Cu(111) are reported. The surface enhanced Raman spectra [J. Chem. Soc. Faraday Trans. 92, 4775 (1996)] and the EEL spectra are shown to be sensitive to crystal face. The relevant excited state observed in the EEL spectrum is not intrinsic to molecular PMDA, but results from chemisorption. The Raman spectra are sensitive to the incident laser polarization on both the (100) and (111) surfaces but in different ways. These observations are shown to be a result of the excited state potential energy surface having different shape, and the respective transition dipole...
Journal of Chemical Physics | 2011
Pooja Tyagi; Patanjali Kambhampati
Multiple exciton recombination (MER) and multiple exciton generation (MEG) are two of the main processes for assessing the usefulness of quantum dots (QDs) in photovoltaic devices. Recent experiments, however, have shown that a firm understanding of both processes is far from well established. By performing surface-dependent measurements on colloidal CdSe QDs, we find that surface-induced charge trapping processes lead to false MER and MEG signals resulting in an inaccurate measurement of these processes. Our results show that surface-induced processes create a significant contribution to the observed discrepancies in both MER and MEG experiments. Spectral signatures in the transient absorption signals reveal the physical origin of these false signals.
Journal of Chemical Physics | 2008
Samuel L. Sewall; Ryan R. Cooney; Kevin E. H. Anderson; Eva A. Dias; D. M. Sagar; Patanjali Kambhampati
Biexcitons in strongly confined, colloidal CdSe quantum dots were investigated with excitonic state selectivity combined with 10 fs temporal precision. Within the first 50 fs, the first excited state of the biexciton was observed. By 100 ps, mixed character biexcitons were observed, comprised of a core exciton and a surface trapped exciton. The size dependence of the biexciton binding energies is reported for these specific biexcitons. Analysis of the spectral signatures of each biexcitonic state yields a quantitative measure of enhanced excited state trapping rates at the surface of the quantum dots. By comparing the biexcitonic signals to the state-filling signals, we show that it is primarily the holes which are trapped at the interface on the 100 ps time scale.
ACS Nano | 2013
Michael M. Krause; Jonathan Mooney; Patanjali Kambhampati
Small CdSe semiconductor nanocrystals with diameters below 2 nm are thought to emit white light due to random surface defects which result in a broad distribution of midgap emitting states, thereby preventing rational design of small nanocrystal white light emitters. We perform temperature dependent photoluminescence experiments before and after ligand exchange and electron transfer simulations to reveal a very simple microscopic picture of the origin of the white light. These experiments and simulations reveal that these small nanocrystals can be physically modeled in precisely the same way as normal-sized semiconductor nanocrystals; differences in their emission spectra arise from their surface thermodynamics. The white light emission is thus a consequence of the thermodynamic relationship between a core excitonic state and an optically bright surface state with good quantum yield. By virtue of this understanding of the surface and the manner in which it is coupled to the core excitonic states of these nanocrystals, we show both chemical and thermodynamic control of the photoluminescence spectra. We find that using both temperature and appropriate choice in ligands, one can rationally control the spectra so as to engineer the surface to target color rendering coordinates for displays and white light emitters.
Journal of Chemical Physics | 2013
Jonathan Mooney; Michael M. Krause; Jonathan I. Saari; Patanjali Kambhampati
Several different compositions of semiconductor nanocrystals are subjected to numerous spectroscopic techniques to elucidate the nature of surface trapping in these systems. We find a consistent temperature-dependent relationship between core and surface photoluminescence intensity and marked differences in electron-phonon coupling for core and surface states based on ultrafast measurements and Resonance Raman studies, respectively. These results support a minimal model of surface charge trapping applicable to a range of nanocrystal systems involving a single surface state in which the trapped charge polarization leads to strong phonon couplings, with transitions between the surface and band edge excitonic states being governed by semiclassical electron-transfer theory.
Journal of Chemical Physics | 2009
Ryan R. Cooney; Samuel L. Sewall; D. M. Sagar; Patanjali Kambhampati
Optical gain in strongly confined colloidal semiconductor quantum dots is measured using state resolved pump/probe spectroscopy. Though size tunable optical amplification has been previously reported for these materials, the influence of confinement enhanced multiexcitonic interactions has limited prior demonstrations to specific particle sizes or host media. Here we show that the influence of the interfering multiexcitonic interactions, and hence the development of optical gain, is dependent on the identity of the initially prescribed excitonic state. By maintaining a constant excitonic state in the size tunable electronic structure of these materials, we recover the predicted universal development of optical gain, reflected by size-independent occupation thresholds, and differential gains. In addition, we explicitly compare the influence of surface passivation on the development and lifetime of the optical gain. Furthermore, we introduce a general, state-resolved pumping scheme which enables control over the optical gain spectrum. The capacity to manipulate the optical gain spectra of these spherically confined systems is evident in both the measured stimulated emission and amplified spontaneous emission. We anticipate that state-resolved optical excitation will be a useful method of enabling the development and manipulation of optical gain in any quantized nanostructure.
Nano Letters | 2010
Pooja Tyagi; Ryan R. Cooney; Samuel L. Sewall; D. M. Sagar; Jonathan I. Saari; Patanjali Kambhampati
By direct observation of coherent acoustic phonons, we demonstrate a novel extrinsic piezoelectric response in colloidal CdSe semiconductor quantum dots. This response is driven by the migration of charges to the surface of the quantum dot on a vibrationally impulsive time scale. Surface- and fluence-dependent studies reveal that the observed carrier capture based piezo response is controllable and is at least an order of magnitude larger than the intrinsic piezo response of wurtzite CdSe.
Journal of Physical Chemistry Letters | 2015
Lakshay Jethi; Michael M. Krause; Patanjali Kambhampati
Semiconductor nanocrystals have been synthesized that support intrinsic dual emission from the excitonic core as well as the surface. By virtue of chemical control of the thermodynamics of the core/surface equilibria, these nanocrystals support ratiometric temperature sensing over a broad temperature scale. This surface-chemistry-based approach for creating intrinsic dual emission enables a completely new strategy for application of these nanocrystals in optical nanothermometry.
Journal of Physical Chemistry B | 2013
Jonathan I. Saari; Eva A. Dias; Danielle Reifsnyder; Michael M. Krause; Brenna R. Walsh; Christopher B. Murray; Patanjali Kambhampati
Aging of semiconductor nanocrystals (NCs) is well-known to attenuate the spontaneous photoluminescence from the band edge excitonic state by introduction of nonradiative trap states formed at the NC surface. In order to explore charge carrier dynamics dictated by the surface of the NC, femtosecond pump/probe spectroscopic experiments are performed on freshly synthesized and aged CdTe NCs. These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X). Pump fluence dependence with excitonic state-resolved optical pumping enables directly populating the biexcitonic state (XX), which produces further accelerated electron trapping rates. This increase in electron trapping rate triggers coherent acoustic phonons by virtue of the ultrafast impulsive time scale of the surface trapping process. The observed trapping rates are discussed in terms of electron transfer theory.