Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patric Glynn is active.

Publication


Featured researches published by Patric Glynn.


Journal of Clinical Investigation | 2013

Diabetes increases mortality after myocardial infarction by oxidizing CaMKII

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Circulation | 2012

Ca2+/Calmodulin-Dependent Protein Kinase II–Based Regulation of Voltage-Gated Na+ Channel in Cardiac Disease

Olha M. Koval; Jedidiah S. Snyder; Roseanne M. Wolf; Ryan E. Pavlovicz; Patric Glynn; Jerry Curran; Nicholas D. Leymaster; Wen Dun; Patrick J. Wright; Natalia Cardona; Lan Qian; Colleen C. Mitchell; Penelope A. Boyden; Philip F. Binkley; Chenglong Li; Mark E. Anderson; Peter J. Mohler; Thomas J. Hund

Background —Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked with potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite over a decade of investigation. Post-translational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel post-translational modifications and disease. We recently identified a novel pathway for post-translational regulation of the primary cardiac voltage-gated Na + channel (Na v 1.5) by CaMKII. However, a role for this pathway in cardiac disease has not been evaluated. Methods and Results —We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na v 1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na v 1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Nav1.5 resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large animal model of acquired heart disease and in failing human myocardium. Conclusions —We identify the mechanism for two human arrhythmia variants that affect Na v 1.5 channel activity through direct effects on channel post-translational modification. We propose that the CaMKII phosphorylation motif in the Na v 1.5 DI-DII cytoplasmic loop is a critical nodal point for pro-arrhythmic changes to Na v 1.5 in congenital and acquired cardiac disease.Background— Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na+ channel (Nav1.5) by Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. Methods and Results— We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Nav1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Nav1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Nav1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. Conclusions— We identify the mechanism for 2 human arrhythmia variants that affect Nav1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Nav1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Nav1.5 in congenital and acquired cardiac disease.


Circulation | 2012

CaMKII-Based Regulation of Voltage-Gated Na+ Channel in Cardiac Disease

Olha M. Koval; Jedidiah S. Snyder; Roseanne M. Wolf; Ryan E. Pavlovicz; Patric Glynn; Jerry Curran; Nicholas D. Leymaster; Wen Dun; Patrick J. Wright; Natalia Cardona; Lan Qian; Colleen C. Mitchell; Penelope A. Boyden; Philip F. Binkley; Chenglong Li; Mark E. Anderson; Peter J. Mohler; Thomas J. Hund

Background —Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked with potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite over a decade of investigation. Post-translational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel post-translational modifications and disease. We recently identified a novel pathway for post-translational regulation of the primary cardiac voltage-gated Na + channel (Na v 1.5) by CaMKII. However, a role for this pathway in cardiac disease has not been evaluated. Methods and Results —We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na v 1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na v 1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Nav1.5 resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large animal model of acquired heart disease and in failing human myocardium. Conclusions —We identify the mechanism for two human arrhythmia variants that affect Na v 1.5 channel activity through direct effects on channel post-translational modification. We propose that the CaMKII phosphorylation motif in the Na v 1.5 DI-DII cytoplasmic loop is a critical nodal point for pro-arrhythmic changes to Na v 1.5 in congenital and acquired cardiac disease.Background— Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na+ channel (Nav1.5) by Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. Methods and Results— We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Nav1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Nav1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Nav1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. Conclusions— We identify the mechanism for 2 human arrhythmia variants that affect Nav1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Nav1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Nav1.5 in congenital and acquired cardiac disease.


Circulation | 2015

Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo

Patric Glynn; Hassan Musa; Xiangqiong Wu; Sathya D. Unudurthi; Sean C. Little; Lan Qian; Patrick J. Wright; Przemysław B. Radwański; Sandor Gyorke; Peter J. Mohler; Thomas J. Hund

Background— Voltage-gated Na+ channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. Methods and Results— To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca2+ handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. Conclusions— Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis.

Roseanne M. Wolf; Patric Glynn; Seyed Hashemi; Keyan Zarei; Colleen C. Mitchell; Mark E. Anderson; Peter J. Mohler; Thomas J. Hund

Ankyrin-B is a multifunctional adapter protein responsible for localization and stabilization of select ion channels, transporters, and signaling molecules in excitable cells including cardiomyocytes. Ankyrin-B dysfunction has been linked with highly penetrant sinoatrial node (SAN) dysfunction and increased susceptibility to atrial fibrillation. While previous studies have identified a role for abnormal ion homeostasis in ventricular arrhythmias, the molecular mechanisms responsible for atrial arrhythmias and SAN dysfunction in human patients with ankyrin-B syndrome are unclear. Here, we develop a computational model of ankyrin-B dysfunction in atrial and SAN cells and tissue to determine the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human patients with ankyrin-B syndrome. Our simulations predict that defective membrane targeting of the voltage-gated L-type Ca(2+) channel Cav1.3 leads to action potential shortening that reduces the critical atrial tissue mass needed to sustain reentrant activation. In parallel, increased fibrosis results in conduction slowing that further increases the susceptibility to sustained reentry in the setting of ankyrin-B dysfunction. In SAN cells, loss of Cav1.3 slows spontaneous pacemaking activity, whereas defects in Na(+)/Ca(2+) exchanger and Na(+)/K(+) ATPase increase variability in SAN cell firing. Finally, simulations of the intact SAN reveal a shift in primary pacemaker site, SAN exit block, and even SAN failure in ankyrin-B-deficient tissue. These studies identify the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human disease. Importantly, ankyrin-B dysfunction involves changes at both the cell and tissue levels that favor the common manifestation of atrial arrhythmias and SAN dysfunction.


Cardiovascular Research | 2014

βIV-Spectrin regulates TREK-1 membrane targeting in the heart

Thomas J. Hund; Jedidiah S. Snyder; Xiangqiong Wu; Patric Glynn; Olha M. Koval; Birce Onal; Nicholas D. Leymaster; Sathya D. Unudurthi; Jerry Curran; Celia Camardo; Patrick J. Wright; Philip F. Binkley; Mark E. Anderson; Peter J. Mohler

AIMS Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K(2P)) family members, despite their potential importance in modulation of heart function. METHODS AND RESULTS Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K(2P) channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that β(IV)-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing β(IV)-spectrin lacking TREK-1 binding (qv(4J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal β(IV)-spectrin levels in human heart failure. CONCLUSIONS These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for β(IV)-spectrin in organizing functional membrane domains critical for normal heart function.


Journal of Cardiovascular Electrophysiology | 2014

Ibandronate and ventricular arrhythmia risk.

Ingrid M. Bonilla; Pedro Vargas-Pinto; Yoshinori Nishijima; Adriana Pedraza-Toscano; Hsiang-Ting Ho; Victor P. Long; Andriy E. Belevych; Patric Glynn; Mahmoud Houmsse; Troy Rhodes; Raul Weiss; Thomas J. Hund; Robert L. Hamlin; Sandor Gyorke; Cynthia A. Carnes

Bisphosphonates, including ibandronate, are used in the prevention and treatment of osteoporosis.


PLOS ONE | 2014

Cycle Length Restitution in Sinoatrial Node Cells: A Theory for Understanding Spontaneous Action Potential Dynamics

Patric Glynn; Birce Onal; Thomas J. Hund

Normal heart rhythm (sinus rhythm) is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation). While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution) that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity) and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling) that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.


Journal of Clinical Investigation | 2013

Diabetes increases mortality after myocardial infarction by oxidizingCaMKII

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Journal of Clinical Investigation | 2013

Erratum: Diabetes increases mortality after myocardial infarction by oxidizing CaMKII (Journal of Clinical Investigation (2013) 123:5 (2333) 10.1172/JCI70180)

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.

Collaboration


Dive into the Patric Glynn's collaboration.

Top Co-Authors

Avatar

Thomas J. Hund

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Lang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge