Patric Ljung
Siemens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patric Ljung.
ieee symposium on information visualization | 2005
Jimmy Johansson; Patric Ljung; Mikael Jern; Matthew D. Cooper
In order to gain insight into multivariate data, complex structures must be analysed and understood. Parallel coordinates is an excellent tool for visualizing this type of data but has its limitations. This paper deals with one of its main limitations - how to visualize a large number of data items without hiding the inherent structure they constitute. We solve this problem by constructing clusters and using high precision textures to represent them. We also use transfer functions that operate on the high precision textures in order to highlight different aspects of the cluster characteristics. Providing predefined transfer functions as well as the support to draw customized transfer functions makes it possible to extract different aspects of the data. We also show how feature animation can be used as guidance when simultaneously analysing several clusters. This technique makes it possible to visually represent statistical information about clusters and thus guides the user, making the analysis process more efficient.
IEEE Transactions on Visualization and Computer Graphics | 2006
Claes Lundström; Patric Ljung; Anders Ynnerman
Direct volume rendering (DVR) is of increasing diagnostic value in the analysis of data sets captured using the latest medical imaging modalities. The deployment of DVR in everyday clinical work, however, has so far been limited. One contributing factor is that current transfer function (TF) models can encode only a small fraction of the users domain knowledge. In this paper, we use histograms of local neighborhoods to capture tissue characteristics. This allows domain knowledge on spatial relations in the data set to be integrated into the TF. As a first example, we introduce partial range histograms in an automatic tissue detection scheme and present its effectiveness in a clinical evaluation. We then use local histogram analysis to perform a classification where the tissue-type certainty is treated as a second TF dimension. The result is an enhanced rendering where tissues with overlapping intensity ranges can be discerned without requiring the user to explicitly define a complex, multidimensional TF
international conference on computer graphics and interactive techniques | 2008
Markus Hadwiger; Patric Ljung; Christof Rezk Salama; Timo Ropinski
Volume raycasting techniques are important for both visual arts and visualization. They allow an efficient generation of visual effects and the visualization of scientific data obtained by tomography or numerical simulation. Thanks to their flexibility, experts agree that GPU-based raycasting is the state-of-the art technique for interactive volume rendering. It will most likely replace existing slice-based techniques in the near future. Volume rendering techniques are also effective for the direct rendering of implicit surfaces used for soft body animation and constructive solid geometry. The lecture starts off with an in-depth introduction to the concepts behind GPU-based ray-casting to provide a common base for the following parts. The focus of this course is on advanced illumination techniques which approximate the physically-based light transport more convincingly. Such techniques include interactive implementation of soft and hard shadows, ambient occlusion and simple Monte-Carlo based approaches to global illumination including translucency and scattering. With the proposed techniques, users are able to interactively create convincing images from volumetric data whose visual quality goes far beyond traditional approaches. The optical properties in participating media are defined using the phase function. Many approximations to the physically based light transport applied for rendering natural phenomena such as clouds or smoke assume a rather homogenous phase function model. For rendering volumetric scans on the other hand different phase function models are required to account for both surface-like structures and fuzzy boundaries in the data. Using volume rendering techniques, artists who create medical visualization for science magazines may now work on tomographic scans directly, without the necessity to fall back to creating polygonal models of anatomical structures.
IEEE Transactions on Visualization and Computer Graphics | 2006
Patric Ljung; Calle Winskog; Anders Persson; Claes Lundström; Anders Ynnerman
This paper presents a procedure for virtual autopsies based on interactive 3D visualizations of large scale, high resolution data from CT-scans of human cadavers. The procedure is described using examples from forensic medicine and the added value and future potential of virtual autopsies is shown from a medical and forensic perspective. Based on the technical demands of the procedure state-of-the-art volume rendering techniques are applied and refined to enable real-time, full body virtual autopsies involving gigabyte sized data on standard GPUs. The techniques applied include transfer function based data reduction using level-of-detail selection and multi-resolution rendering techniques. The paper also describes a data management component for large, out-of-core data sets and an extension to the GPU-based raycaster for efficient dual TF rendering. Detailed benchmarks of the pipeline are presented using data sets from forensic cases
IEEE Transactions on Visualization and Computer Graphics | 2010
Frida Hernell; Patric Ljung; Anders Ynnerman
This paper presents a novel technique to efficiently compute illumination for Direct Volume Rendering using a local approximation of ambient occlusion to integrate the intensity of incident light for each voxel. An advantage with this local approach is that fully shadowed regions are avoided, a desirable feature in many applications of volume rendering such as medical visualization. Additional transfer function interactions are also presented, for instance, to highlight specific structures with luminous tissue effects and create an improved context for semitransparent tissues with a separate absorption control for the illumination settings. Multiresolution volume management and GPU-based computation are used to accelerate the calculations and support large data sets. The scheme yields interactive frame rates with an adaptive sampling approach for incrementally refined illumination under arbitrary transfer function changes. The illumination effects can give a better understanding of the shape and density of tissues and so has the potential to increase the diagnostic value of medical volume rendering. Since the proposed method is gradient-free, it is especially beneficial at the borders of clip planes, where gradients are undefined, and for noisy data sets.
ieee vgtc conference on visualization | 2006
Patric Ljung; Claes Lundström; Anders Ynnerman
We present a direct interblock interpolation technique that enables direct volume rendering of blocked, multiresolution volumes. The proposed method smoothly interpolates between blocks of arbitrary block-wise level-of-detail (LOD) without sample replication or padding. This permits extreme changes in resolution across block boundaries and removes the interblock dependency for the LOD creation process. In addition the full data reduction from the LOD selection can be maintained throughout the rendering pipeline. Our rendering pipeline employs a flat block subdivision followed by a transfer function based adaptive LOD scheme. We demonstrate the effectiveness of our method by rendering volumes of the order of gigabytes using consumer graphics cards on desktop PC systems.
ieee vgtc conference on visualization | 2005
Claes Lundström; Patric Ljung; Anders Ynnerman
Direct Volume Rendering (DVR) is known to be of diagnostic value in the analysis of medical data sets. However, its deployment in everyday clinical use has so far been limited. Two major challenges are that the current methods for Transfer Function (TF) construction are too complex and that the tissue separation abilities of the TF need to be extended. In this paper we propose the use of histogram analysis in local neighborhoods to address both these conflicting problems. To reduce TF construction difficulty, we introduce Partial Range Histograms in an automatic tissue detection scheme, which in connection with Adaptive Trapezoids enable efficient TF design. To separate tissues with overlapping intensity ranges, we propose a fuzzy classification based on local histograms as a second TF dimension. This increases the power of the TF, while retaining intuitive presentation and interaction.
IEEE Transactions on Visualization and Computer Graphics | 2012
Joel Kronander; Daniel Jönsson; Joakim Löw; Patric Ljung; Anders Ynnerman; Jonas Unger
We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.
Information Visualization | 2006
Jimmy Johansson; Patric Ljung; Mikael Jern; Matthew D. Cooper
Parallel coordinates is a well-known technique used for visualization of multivariate data. When the size of the data sets increases the parallel coordinates display results in an image far too cluttered to perceive any structure. We tackle this problem by constructing high-precision textures to represent the data. By using transfer functions that operate on the high-precision textures, it is possible to highlight different aspects of the entire data set or clusters of the data. Our methods are implemented in both standard 2D parallel coordinates and 3D multi-relational parallel coordinates. Furthermore, when visualizing a larger number of clusters, a technique called ‘feature animation’ may be used as guidance by presenting various cluster statistics. A case study is also performed to illustrate the analysis process when analysing large multivariate data sets using our proposed techniques.
eurographics | 2007
Frida Hernell; Patric Ljung; Anders Ynnerman
This paper introduces a novel technique to compute illumination for Direct Volume Rendering. By adding shadow effects to volume rendered images, the perception of shapes and tissue properties can be significantly improved and it has the potential to increase the diagnostic value of medical volume rendering. The integrated intensity of incident light for a voxel is computed using a local approximation of the ambient occlusion, thus avoiding the rendering of tissues with very low illumination. Luminous tissue effects are also introduced to enhance the illumination model, controlled through an emissive component in the transfer function. This effect allows the user to highlight specific structures and can give a better understanding of tissue density. Multiresolution volume management and GPU-based computation is used to significantly speed-up the calculations and to support large data sets. The scheme yields interactive frame rates for incrementally refined ambient and emissive illumination for arbitrary transfer function changes.