Patrice Brehmer
Institut de recherche pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrice Brehmer.
Aquatic Living Resources | 2003
Patrice Brehmer; François Gerlotto; Joelle Guillard; Fabien Sanguinède; Yvon Guennegan; Dominique Buestel
The development of acoustics tools and methods for monitoring anthropized ecosystems represents a new field for the application of acoustics. Monitoring such an environment was not possible with single vertical echo sounders, due to the fact that the artificial structures and the natural targets were not distinguishable. Monitoring data were collected along the French Mediterranean coastline, during five short surveys of mussel culture longline areas. Both the Reson Seabat 6012 multibeam sonar (455 kHz) and the Simrad SR 240 omnidirectional sonar (23.75 kHz) were used for target detection. The former tools allow accurate allocation of the different types of echoes to artefacts, fish schools and scattered fish. The school characteristics collected included morphological, geographical (GPS, school location), and behavioural (connections with the longlines). An acoustic survey undertaken with the same hardware near the study area allowed the comparison of fish schools and the TS distribution of individual fish in the open sea and in the mussel area. These data permitted us to evaluate the ecological impact of a mussel culture on the ecosystem, in a context of predation behaviour of fish on these longlines. Finally, the acoustic data revealed the configuration of each concession and the level of charge of each line. We discuss the applicability of this technology for in situ real time monitoring for joint management of such ecosystems. The information can allow littoral cooperative management or incorporating it into an ecosystem approach.
Journal of Geophysical Research | 2014
S. Ndoye; Xavier Capet; Philippe Estrade; Bamol Ali Sow; Dominique Dagorne; Alban Lazar; Amadou T. Gaye; Patrice Brehmer
The southern end of the Canary current system comprises of an original upwelling center that has so far received little attention, the Southern Senegal-Gambia Upwelling Center (SSUC). We investigate its dynamical functioning by taking advantage of favorable conditions in terms of limited cloud coverage. Analyses and careful examinations of over 1500 satellite images of sea surface temperature scenes contextualized with respect to wind conditions confirm the regularity and stability of the SSUC dynamical functioning (as manifested by the recurrence and persistence of particular SST patterns). The analyses also reveal subtle aspects of its upwelling structure: shelf break cooling of surface waters consistent with internal tide breaking/mixing; complex interplay between local upwelling and the Mauritanian current off the Cape Verde headland; complexity of the inner-shelf/mid shelf frontal transition. The amplitude of the diurnal cycle suggests that large uncertainties exist in the SSUC heat budget. The studies limitations underscore the need for continuous in situ measurement in the SSUC, particularly of winds.
PLOS ONE | 2016
Kamarel Ba; Modou Thiaw; Najih Lazar; Alassane Sarr; Timothée Brochier; Ismaïla Ndiaye; Alioune Faye; O. Sadio; Jacques Panfili; Omar Thiom Thiaw; Patrice Brehmer
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
Journal of Physical Oceanography | 2017
Xavier Capet; Philippe Estrade; Eric Machu; Siny Ndoye; Jacques Grelet; Alban Lazar; Louis Marié; Denis Dausse; Patrice Brehmer
Upwelling off southern Senegal and Gambia takes place over a wide shelf with a large area where depths are shallower than 20 m. This results in typical upwelling patterns that are distinct (e.g., more persistent in time and aligned alongshore) from those of other better known systems, including Oregon and Peru where inner shelves are comparatively narrow. Synoptic to superinertial variability of this upwelling center is captured through a 4-week intensive field campaign, representing the most comprehensive measurements of this region to date. The influence of mesoscale activity extends across the shelf break and far over the shelf where it impacts the midshelf upwelling (e.g., strength of the upwelling front and circulation), possibly in concert with wind fluctuations. Internal tides and solitary waves of large amplitude are ubiquitous over the shelf. The observations suggest that these and possibly other sources of mixing play a major role in the overall system dynamics through their impact upon the general shelf thermohaline structure, in particular in the vicinity of the upwelling zone. Systematic alongshore variability in thermohaline properties highlights important limitations of the 2D idealization framework that is frequently used in coastal upwelling studies.
Geophysical Research Letters | 2017
Siny Ndoye; Xavier Capet; Philippe Estrade; Bamol Ali Sow; Eric Machu; Timothée Brochier; Julian Döring; Patrice Brehmer
Senegal is the southern tip of the Canary upwelling system. Its coastal ocean hosts an upwelling center which shapes sea surface temperatures between latitudes 12 ∘ and 15 ∘ N. Near this latter latitude, the Cape Verde headland and a sudden change in shelf cross-shore profile are major sources of heterogeneity in the southern Senegal upwelling sector (SSUS). SSUS dynamics is investigated by means of Regional Ocean Modeling System simulations. Configuration realism and resolution (Δx ≈ 2 km) are sufficient to reproduce the SSUS frontal system. Our main focus is on the 3-D upwelling circulation which turns out to be profoundly different from 2-D theory: cold water injection onto the shelf and upwelling are strongly concentrated within a few tens of kilometers south of Cape Verde and largely arise from flow divergence in the alongshore direction; a significant fraction of the upwelled waters are retained nearshore over long distances while travelling southward under the influence of northerly winds. Another source of complexity, regional-scale alongshore pressure gradients, also contributes to the overall retention of upwelled waters over the shelf. Varying the degree of realism of atmospheric and oceanic forcings does not appreciably change these conclusions. This study sheds light on the dynamics and circulation underlying the recurrent sea surface temperature pattern observed during the upwelling season and offers new perspectives on the connections between the SSUS physical environment and its ecosystems. It also casts doubt on the validity of upwelling intensity estimations based on simple Ekman upwelling indices at such local scales.
Acta Biotheoretica | 2014
Nguyen Trong Hieu; Timothée Brochier; Nguyen-Huu Tri; Pierre Auger; Patrice Brehmer
Abstract We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.
2013 Ocean Electronics (SYMPOL) | 2013
Jean-Pierre Hermand; Joanne Randall; Frank Dubois; Patrick Queeckers; Catherine Yourassowsky; Fabrice Roubaud; Jacques Grelet; Gildas Roudaut; Abdoulaye Sarre; Patrice Brehmer
We present the first results obtained by a newly developed submersible digital holography microscope (DHM), Holoflow@Sea, to enable continuous in-situ monitoring of ocean or fresh water bodies in a less intrusive manner. The microscope features an off-axis configuration with reduced-coherence illumination. The optics is designed to image plankton and particles in the size range 2 μm-200μm within a water volume of 1 mm × 1 mm × 2 mm. The prototype was successfully deployed for the first time over the continental shelf of Senegal during a fisheries survey carried out in March 2013. The objective was to combine several laboratory techniques used for plankton and particle identification (high-performance liquid chromatography, flow cytometry and optical microscopy) on discrete collected samples with DHM images taken in situ at locations with different environmental conditions. Hologram data were acquired inside an upwelling cell, i.e., new water, and along the coast, i.e., old water, as well as off the upwelling cell at the continental shelf border. Preliminary results of holographic reconstruction are encouraging, with the distinctive morphology of some phytoplankton species allowing easy identification to genera level. Challenges are recognised with the identification of small spheroid organisms. Analyses are underway to allow comparison with traditional methods of plankton identification and evaluate the benefit of additional in-situ observations obtained by holography microscopy. The preliminary results already demonstrate the potential of DHM for in-situ studies of plankton and particles.
Journal of Theoretical Biology | 2018
Trong Hieu Nguyen; Timothée Brochier; Pierre Auger; Viet Duoc Trinh; Patrice Brehmer
An idealized system of a shared fish stock associated with different exclusive economic zones (EEZ) is modelled. Parameters were estimated for the case of the small pelagic fisheries shared between Southern Morocco, Mauritania and the Senegambia. Two models of fishing effort distribution were explored. The first one considers independent national fisheries in each EEZ, with a cost per unit of fishing effort that depends on local fishery policy. The second one considers the case of a fully cooperative fishery performed by an international fleet freely moving across the borders. Both models are based on a set of six ordinary differential equations describing the time evolution of the fish biomass and the fishing effort. We take advantage of the two time scales to obtain a reduced model governing the total fish biomass of the system and fishing efforts in each zone. At the fast equilibrium, the fish distribution follows the ideal free distribution according to the carrying capacity in each area. Different equilibria can be reached according to management choices. When fishing fleets are independent and national fishery policies are not harmonized, in the general case, competition leads after a few decades to a scenario where only one fishery remains sustainable. In the case of sub-regional agreement acting on the adjustment of cost per unit of fishing effort in each EEZ, we found that a large number of equilibria exists. In this last case the initial distribution of fishing effort strongly impact the optimal equilibrium that can be reached. Lastly, the country with the highest carrying capacity density may get less landings when collaborating with other countries than if it minimises its fishing costs. The second fully cooperative model shows that a single international fishing fleet moving freely in the fishing areas leads to a sustainable equilibrium. Such findings should foster regional fisheries organizations to get potential new ways for neighbouring fish stock management.
Journal of the Acoustical Society of America | 2003
François Gerlotto; Patrice Brehmer; Paul G. Fernandes; David G. Reid; Philip Copland; Stratis Georgakarakos; Jorge Paramo
Multibeam sonars have been used since the mid 90s for three dimensions and a dynamic observation of fish schools and shoals in their environment. A 455 kHz Reson Seabat 6012, with 60 beams of 1.5×22 deg, was used. It has allowed the quantification of school avoidance in acoustic surveys; the three‐dimensional description of school structure and position in the water column; the noninvasive study of the real schooling behavior of fish in the wild; the observation and quantification of fish in relation to survey gear; and the predation on mussels in aquaculture by fish schools; the fish school distribution in relation to ecological factors, even in very shallow water. These observations showed that a multibeam sonar can be a useful tool for improving the quality of stock assessment surveys and studying the behavioral ecology of important commercial species. To date all these applications are essentially observational. The next stage in the development of these systems will be to produce quantitative biomass...
Thalassas: an International Journal of Marine Sciences | 2018
Cataixa López; Rui Freitas; Edita Magileviciute; Sara S. Ratão; Patrice Brehmer; James Davis Reimer
Zoanthus is a genus of colonial cnidarians very common in shallow subtropical and tropical rocky and coral reef ecosystems around the world. Some species, such as Zoanthus solanderi and Z. sociatus, can coexist and cover extensive areas in the subtidal zone of some areas in the Caribbean. We report on a ‘Zoanthus zone’ in Western Africa in a bay in the north of Maio Island in the Cabo Verde Archipelago, discovered in October 2014. Molecular analyses showed that the Maio Island carpet is formed by Z. sociatus and Z. solanderi. Similar aggregations have been reported from the other side of the Atlantic Ocean in the Caribbean. This work demonstrates the presence of the ‘Zoanthus zone’ in the Central East Atlantic and adds two new records of Zoanthus species in the Cabo Verde Islands.