Patrice Codogno
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrice Codogno.
Nature Reviews Drug Discovery | 2012
David C. Rubinsztein; Patrice Codogno; Beth Levine
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation.
Nature Cell Biology | 2008
Ezgi Tasdemir; M. Chiara Maiuri; Lorenzo Galluzzi; Ilio Vitale; Mojgan Djavaheri-Mergny; Marcello D'Amelio; Alfredo Criollo; Eugenia Morselli; Changlian Zhu; Francis Harper; Ulf Nannmark; Chrysanthi Samara; Paolo Pinton; Jose Miguel Vicencio; Rosa Carnuccio; Ute M. Moll; Frank Madeo; Patrizia Paterlini-Bréchot; Rosario Rizzuto; Gérard Pierron; Klas Blomgren; Nektarios Tavernarakis; Patrice Codogno; Francesco Cecconi; Guido Kroemer
Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53−/− cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.
Journal of Biological Chemistry | 2006
Mojgan Djavaheri-Mergny; Manuela Amelotti; Julie Mathieu; Françoise Besançon; Chantal Bauvy; Sylvie Souquère; Gérard Pierron; Patrice Codogno
Activation of NF-κB and autophagy are two processes involved in the regulation of cell death, but the possible cross-talk between these two signaling pathways is largely unknown. Here, we show that NF-κB activation mediates repression of autophagy in tumor necrosis factor-α (TNFα)-treated Ewing sarcoma cells. This repression is associated with an NF-κB-dependent activation of the autophagy inhibitor mTOR. In contrast, in cells lacking NF-κB activation, TNFα treatment up-regulates the expression of the autophagy-promoting protein Beclin 1 and subsequently induces the accumulation of autophagic vacuoles. Both of these responses are dependent on reactive oxygen species (ROS) production and can be mimicked in NF-κB-competent cells by the addition of H2O2. Small interfering RNA-mediated knockdown of beclin 1 and atg7 expression, two autophagy-related genes, reduced TNFα- and reactive oxygen species-induced apoptosis in cells lacking NF-κB activation and in NF-κB-competent cells, respectively. These findings demonstrate that autophagy may amplify apoptosis when associated with a death signaling pathway. They are also evidence that inhibition of autophagy is a novel mechanism of the antiapoptotic function of NF-κB activation. We suggest that stimulation of autophagy may be a potential way bypassing the resistance of cancer cells to anti-cancer agents that activate NF-κB.
Cell Death & Differentiation | 2008
F Scarlatti; R Maffei; I Beau; Patrice Codogno; R Ghidoni
Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.
Cell Death & Differentiation | 2009
Francesca Scarlatti; Riccarda Granata; Aj Meijer; Patrice Codogno
Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the loss of interaction with the extracellular matrix, and the toxicity of cancer therapies. During periods of nutrient starvation, stimulating macroautophagy provides the fuel required to maintain an active metabolism and the production of ATP. Macroautophagy can inhibit the induction of several forms of cell death, such as apoptosis and necrosis. However, it can also be part of the cascades of events that lead to cell death, either by collaborating with other cell death mechanisms or by causing cell death on its own. Loss of the regulation of bulk macroautophagy can prime self-destruction by cells, and some forms of selective autophagy and non-canonical forms of macroautophagy have been shown to be associated with cell demise. There is now mounting evidence that autophagy and apoptosis share several common regulatory elements that are crucial in any attempt to understand the dual role of autophagy in cell survival and cell death.
Journal of Biological Chemistry | 2009
Sophie Pattingre; Chantal Bauvy; Stéphane Carpentier; Thierry Levade; Beth Levine; Patrice Codogno
Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C2-ceramide and C6-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr69, Ser70, and Ser87, located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.
Autophagy | 2011
Daniel J. Klionsky; Eric H. Baehrecke; John H. Brumell; Charleen T. Chu; Patrice Codogno; Ana Maria Cuervo; Jayanta Debnath; Vojo Deretic; Zvulun Elazar; Eeva-Liisa Eskelinen; Steven Finkbeiner; Juan Fueyo-Margareto; David A. Gewirtz; Marja Jäättelä; Guido Kroemer; Beth Levine; Thomas J. Melia; Noboru Mizushima; David C. Rubinsztein; Anne Simonsen; Andrew Thorburn; Michael Thumm; Sharon A. Tooze
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers-even those who work in the field-to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Nature | 2013
Olatz Pampliega; Idil Orhon; Bindi Patel; Sunandini Sridhar; Antonio M. Díaz-Carretero; Isabelle Beau; Patrice Codogno; Birgit Satir; Peter Satir; Ana Maria Cuervo
Nutrient deprivation is a stimulus shared by both autophagy and the formation of primary cilia. The recently discovered role of primary cilia in nutrient sensing and signalling motivated us to explore the possible functional interactions between this signalling hub and autophagy. Here we show that part of the molecular machinery involved in ciliogenesis also participates in the early steps of the autophagic process. Signalling from the cilia, such as that from the Hedgehog pathway, induces autophagy by acting directly on essential autophagy-related proteins strategically located in the base of the cilium by ciliary trafficking proteins. Whereas abrogation of ciliogenesis partially inhibits autophagy, blockage of autophagy enhances primary cilia growth and cilia-associated signalling during normal nutritional conditions. We propose that basal autophagy regulates ciliary growth through the degradation of proteins required for intraflagellar transport. Compromised ability to activate the autophagic response may underlie some common ciliopathies.
Critical Reviews in Clinical Laboratory Sciences | 2009
Alfred J. Meijer; Patrice Codogno
Autophagy, a lysosomal process involved in the maintenance of cellular homeostasis, is responsible for the turnover of long-lived proteins and organelles that are either damaged or functionally redundant. The process is tightly controlled by the insulin-amino acid-mammalian target of the rapamycin-dependent signal-transduction pathway. Research in the last decade has indicated not only that autophagy provides cells with oxidizable substrate when nutrients become scarce but also that it can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease, diabetes, and infections.
Autophagy | 2010
Daniel J. Klionsky; Patrice Codogno; Ana Maria Cuervo; Vojo Deretic; Zvulun Elazar; Juan Fueyo-Margareto; David A. Gewirtz; Guido Kroemer; Beth Levine; Noboru Mizushima; David C. Rubinsztein; Michael Thumm; Sharon A. Tooze
Autophagy is a rapidly expanding field in the sense that our knowledge about the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. Similarly, the vocabulary associated with autophagy has grown concomitantly. This fact makes it difficult for readers, even those who work in the field, to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors or chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, or the role of accessory machinery or structures that are associated with autophagy.