Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice D. Smith is active.

Publication


Featured researches published by Patrice D. Smith.


Science | 2008

Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway

Kevin Park; Kai Liu; Yang Hu; Patrice D. Smith; Chen Wang; Bin Cai; Bengang Xu; Lauren Connolly; Ioannis Kramvis; Mustafa Sahin; Zhigang He

The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.


Neuron | 2009

SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo

Patrice D. Smith; Fang Sun; Kevin Park; Bin Cai; Chen Wang; Kenichiro Kuwako; Irene Martinez-Carrasco; Lauren Connolly; Zhigang He

Axon regeneration failure accounts for permanent functional deficits following CNS injury in adult mammals. However, the underlying mechanisms remain elusive. In analyzing axon regeneration in different mutant mouse lines, we discovered that deletion of suppressor of cytokine signaling 3 (SOCS3) in adult retinal ganglion cells (RGCs) promotes robust regeneration of injured optic nerve axons. This regeneration-promoting effect is efficiently blocked in SOCS3-gp130 double-knockout mice, suggesting that SOCS3 deletion promotes axon regeneration via a gp130-dependent pathway. Consistently, a transient upregulation of ciliary neurotrophic factor (CNTF) was observed within the retina following optic nerve injury. Intravitreal application of CNTF further enhances axon regeneration from SOCS3-deleted RGCs. Together, our results suggest that compromised responsiveness to injury-induced growth factors in mature neurons contributes significantly to regeneration failure. Thus, developing strategies to modulate negative signaling regulators may be an efficient strategy of promoting axon regeneration after CNS injury.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease.

Patrice D. Smith; Stephen J. Crocker; Vernice Jackson-Lewis; Kelly L. Jordan-Sciutto; Shawn Hayley; Matthew P. Mount; Michael O'Hare; Steven M. Callaghan; Ruth S. Slack; Serge Przedborski; Hymie Anisman; David S. Park

Recent evidence indicates that cyclin-dependent kinases (CDKs, cdks) may be inappropriately activated in several neurodegenerative conditions. Here, we report that cdk5 expression and activity are elevated after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that damages the nigrostriatal dopaminergic pathway. Supporting the pathogenic significance of the cdk5 alterations are the findings that the general cdk inhibitor, flavopiridol, or expression of dominant-negative cdk5, and to a lesser extent dominant-negative cdk2, attenuates the loss of dopaminergic neurons caused by MPTP. In addition, CDK inhibition strategies attenuate MPTP-induced hypolocomotion and markers of striatal function independent of striatal dopamine. We propose that cdk5 is a key regulator in the degeneration of dopaminergic neurons in Parkinsons disease.


The Journal of Neuroscience | 2007

Involvement of Interferon-γ in Microglial-Mediated Loss of Dopaminergic Neurons

Matthew P. Mount; Arman Lira; David Grimes; Patrice D. Smith; Sylvie Faucher; Ruth S. Slack; Hymie Anisman; Shawn Hayley; David S. Park

Growing evidence implicates microglia in the loss of dopaminergic neurons in Parkinsons disease (PD). However, factors mediating microglial activation in PD are poorly understood. Proinflammatory cytokines, such as interferon-γ (IFN-γ), orchestrate the actions of microglia. We report here that PD patients express significantly elevated levels of IFN-γ in their blood plasma. After this initial finding, we found that IFN-γ-deficient mice displayed attenuated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced substantia nigra pars compacta dopaminergic cell loss along with reduced loss of striatal tyrosine hydroxylase and dopamine transporter fiber density. MPTP-induced depletion of striatal dopamine and its metabolite DOPAC (3,4-dihydroxyphenylacetic acid), as well as ΔFosB, a marker of postsynaptic dysfunction, were also attenuated in these knock-out mice. Consistent with the role for IFN-γ in microglial activation, MPTP-induced morphological activation of microglia was abrogated compared with wild-type mice. To examine more mechanistically the role of IFN-γ in microglial activation, we evaluated the interactions between microglia and dopaminergic neurons in an in vitro mixed microglia/midbrain neuron rotenone-induced death paradigm. In this in vitro paradigm, dopaminergic neurons are selectively damaged by rotenone. Exogenous IFN-γ ligand alone and without rotenone resulted in dopaminergic cell loss, but only in the presence of microglia. The addition of an IFN-γ neutralizing antibody attenuated neuronal loss as a result of rotenone treatment. The presence of only wild-type microglia and not those deficient in IFN-γ receptor elicited significant dopaminergic cell loss when exposed to rotenone. Neurons deficient in IFN-γ receptor, however, did not display increased resistance to death. Finally, levels of IFN-γ message increased in microglia in response to rotenone. Together, these data suggest that IFN-γ participates in death of dopaminergic neurons by regulating microglial activity.


The Journal of Neuroscience | 2006

Calpain-Regulated p35/cdk5 Plays a Central Role in Dopaminergic Neuron Death through Modulation of the Transcription Factor Myocyte Enhancer Factor 2

Patrice D. Smith; Matthew P. Mount; Raj Shree; Steve Callaghan; Ruth S. Slack; Hymie Anisman; Inez Vincent; Xuemin Wang; Zixu Mao; David S. Park

The mechanisms underlying dopamine neuron loss in Parkinsons disease (PD) are not clearly defined. Here, we delineate a pathway by which dopaminergic loss induced by 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) is controlled in vivo. We reported previously that calpains play a central required role in dopamine loss after MPTP treatment. Here, we provide evidence that the downstream effector pathway of calpains is through cyclin-dependent kinase 5 (cdk5)-mediated modulation of the transcription factor myocyte enhancer factor 2 (MEF2). We show that MPTP-induced conversion of the cdk5 activator p35 to a pathogenic p25 form is dependent on calpain activity in vivo. In addition, p35 deficiency attenuates MPTP-induced dopamine neuron loss and behavioral outcome. Moreover, MEF2 is phosphorylated on Ser444, an inactivating site, after MPTP treatment. This phosphorylation is dependent on both calpain and p35 activity, consistent with the model that calpain-mediated activation of cdk5 results in phosphorylation of MEF2 in vivo. Finally, we provide evidence that MEF2 is critical for dopaminergic loss because “cdk5 phosphorylation site mutant” of MEF2D provides neuroprotection in an MPTP mouse model of PD. Together, these data indicate that calpain-p35-p25/cdk5-mediated inactivation of MEF2 plays a critical role in dopaminergic loss in vivo.


Neuron | 2004

BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration

Suneil K. Kalia; Sang Lee; Patrice D. Smith; Li Liu; Stephen J. Crocker; Thorhildur Thorarinsdottir; John R. Glover; Edward A. Fon; David S. Park; Andres M. Lozano

Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, are the major cause of early-onset Parkinsons disease (PD). Decreases in parkin activity may also contribute to neurodegeneration in sporadic forms of PD. Here, we show that bcl-2-associated athanogene 5 (BAG5), a BAG family member, directly interacts with parkin and the chaperone Hsp70. Within this complex, BAG5 inhibits both parkin E3 ubiquitin ligase activity and Hsp70-mediated refolding of misfolded proteins. BAG5 enhances parkin sequestration within protein aggregates and mitigates parkin-dependent preservation of proteasome function. Finally, BAG5 enhances dopamine neuron death in an in vivo model of PD, whereas a mutant that inhibits BAG5 activity attenuates dopaminergic neurodegeneration. This contrasts with the antideath functions ascribed to BAG family members and suggests a potential role for BAG5 in promoting neurodegeneration in sporadic PD through its functional interactions with parkin and Hsp70.


The Journal of Neuroscience | 2004

Regulation of Dopaminergic Loss by Fas in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease

Shawn Hayley; Stephen J. Crocker; Patrice D. Smith; Tanaya Shree; Vernice Jackson-Lewis; Serge Przedborski; Matthew P. Mount; Ruth S. Slack; Hymie Anisman; David S. Park

Accumulating evidence suggests that apoptotic and inflammatory factors contribute to the demise of dopaminergic neurons. In this respect, Fas, a member of the tumor necrosis factor receptor family with proapoptotic and inflammatory functions, was reported to be elevated within the striatum and substantia nigra pars compacta (SNc) of Parkinsons disease (PD) patients. Accordingly, the present investigation evaluated the function of Fas in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Injection of MPTP increased nigral Fas expression, and mice lacking Fas displayed attenuated MPTP-induced SNc dopaminergic loss and microglial activation. In addition, Fas induction was blocked by expression of a dominant-negative c-Jun adenovirus that also protected dopamine neurons from MPTP-induced damage. Together, these data suggest the critical nature of the c-Jun-Fas signaling pathway in MPTP-induced neuronal loss. Although critical for degeneration of the soma, Fas deficiency did not significantly prevent the reduction of dopaminergic terminal fibers within the striatum or normalize the activation of striatal microglia and elevation of the postsynaptic activity marker ΔFosB induced by denervation. Interestingly, Fas-deficient mice displayed a pre-existing reduction in striatal dopamine levels and locomotor behavior when compared with wild-type mice. Despite the reduced terminals, dopamine levels were not further suppressed by MPTP treatment in mutant mice, raising the possibility of a compensatory response in basal ganglia function in Fas-deficient mice.


Proceedings of the National Academy of Sciences of the United States of America | 2001

c-Jun mediates axotomy-induced dopamine neuron death in vivo

Stephen J. Crocker; Wiplove R. Lamba; Patrice D. Smith; Steven M. Callaghan; Ruth S. Slack; Hymie Anisman; David S. Park

Expression of the transcription factor c-Jun is induced in neurons of the central nervous system (CNS) in response to injury. Mechanical transection of the nigrostriatal pathway at the medial forebrain bundle (MFB) results in the delayed retrograde degeneration of the dopamine neurons in the substantia nigra pars compacta (SNc) and induces protracted expression and phosphorylation of c-Jun. However, the role of c-Jun after axotomy of CNS neurons is unclear. Here, we show that adenovirus-mediated expression of a dominant negative form of c-Jun (Ad.c-JunDN) inhibited axotomy-induced dopamine neuron death and attenuated phosphorylation of c-Jun in nigral neurons. Ad.c-JunDN also delayed the degeneration of dopaminergic nigral axons in the striatum after MFB axotomy. Taken together, these findings suggest that activation of c-Jun mediates the loss of dopamine neurons after axotomy injury.


Neurobiology of Disease | 2003

Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice.

Stephen J. Crocker; Peter Liston; Hymie Anisman; Christopher J. Lee; Patrice D. Smith; N Earl; Charlie S. Thompson; David S. Park; Robert G. Korneluk; George S. Robertson

X-linked IAP protein is a potent inhibitor of cell death. Here, we describe a novel transgenic mouse in which the human XIAP gene is expressed under the control of the neuron-specific enolase promoter (NSE-xiap). We demonstrate that nigrostriatal dopamine neurons of NSE-xiap mice were resistant to the damaging effects of the dopaminergic neurotoxin MPTP. MPTP-induced reduction of striatal dopamine metabolism was also attenuated in NSE-xiap mice. Furthermore, NSE-xiap mice treated with MPTP did not exhibit deficits in exploratory behaviour in an open-field test. Taken together, these findings suggest that strategies to enhance neuronal expression of XIAP may provide therapeutic benefit for the treatment of neurodegeneration in Parkinsons disease.


Cell Cycle | 2004

Emerging pathogenic role for cyclin dependent kinases in neurodegeneration.

Patrice D. Smith; Michael O'Hare; David S. Park

While the requirement of CDKs in cell cycle control is well established, the participation of CDK family members in other important biological processes are now beginning to be uncovered. Paramount in these newly defined roles is the surprising involvement of CDKs in neuronal development and death. These discoveries are somewhat of a paradox considering the terminally differentiated state of neurons. This brief perspective will focus on the role of CDKs in neuronal death and neurodegeneration. In this regard, we will primarily explore two (of potentially many) ways by which CDKs may enable neuronal death. The first involves the effects of ectopic activation of cell cycle related CDKs in a terminal post mitotic environment. The second explores how cdk5, a neuron specific cdk required for normal neuronal function, can be usurped to signal death.

Collaboration


Dive into the Patrice D. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge