Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice Delafontaine is active.

Publication


Featured researches published by Patrice Delafontaine.


Cell Stem Cell | 2009

Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6

Ryang Hwa Lee; Andrey A. Pulin; Min Jeong Seo; Daniel J. Kota; Joni Ylostalo; Benjamin L. Larson; Laura Semprun-Prieto; Patrice Delafontaine; Darwin J. Prockop

Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 x 10(6) hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr, but <1000 cells appeared in six other tissues. The hMSCs in lung upregulated expression of multiple genes, with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, i.v. hMSCs, but not hMSCs transduced with TSG-6 siRNA, decreased inflammatory responses, reduced infarct size, and improved cardiac function. I.v. administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest that improvements in animal models and patients after i.v. infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6.


The New England Journal of Medicine | 2013

A Pharmacogenetic versus a Clinical Algorithm for Warfarin Dosing

Stephen E. Kimmel; Benjamin French; Scott E. Kasner; Julie A. Johnson; Jeffrey L. Anderson; Brian F. Gage; Yves Rosenberg; Charles S. Eby; Rosemary Madigan; Robert B. McBane; Sherif Z. Abdel-Rahman; Scott M. Stevens; Steven H. Yale; Emile R. Mohler; Margaret C. Fang; Vinay Shah; Richard B. Horenstein; Nita A. Limdi; James A.S. Muldowney; Jaspal S. Gujral; Patrice Delafontaine; Robert J. Desnick; Thomas L. Ortel; Henny H. Billett; Robert C. Pendleton; Nancy L. Geller; Jonathan L. Halperin; Samuel Z. Goldhaber; Michael D. Caldwell; Robert M. Califf

BACKGROUND The clinical utility of genotype-guided (pharmacogenetically based) dosing of warfarin has been tested only in small clinical trials or observational studies, with equivocal results. METHODS We randomly assigned 1015 patients to receive doses of warfarin during the first 5 days of therapy that were determined according to a dosing algorithm that included both clinical variables and genotype data or to one that included clinical variables only. All patients and clinicians were unaware of the dose of warfarin during the first 4 weeks of therapy. The primary outcome was the percentage of time that the international normalized ratio (INR) was in the therapeutic range from day 4 or 5 through day 28 of therapy. RESULTS At 4 weeks, the mean percentage of time in the therapeutic range was 45.2% in the genotype-guided group and 45.4% in the clinically guided group (adjusted mean difference, [genotype-guided group minus clinically guided group], -0.2; 95% confidence interval, -3.4 to 3.1; P=0.91). There also was no significant between-group difference among patients with a predicted dose difference between the two algorithms of 1 mg per day or more. There was, however, a significant interaction between dosing strategy and race (P=0.003). Among black patients, the mean percentage of time in the therapeutic range was less in the genotype-guided group than in the clinically guided group. The rates of the combined outcome of any INR of 4 or more, major bleeding, or thromboembolism did not differ significantly according to dosing strategy. CONCLUSIONS Genotype-guided dosing of warfarin did not improve anticoagulation control during the first 4 weeks of therapy. (Funded by the National Heart, Lung, and Blood Institute and others; COAG ClinicalTrials.gov number, NCT00839657.).


Journal of The American Society of Nephrology | 2009

IL-6 and Serum Amyloid A Synergy Mediates Angiotensin II–Induced Muscle Wasting

Liping Zhang; Jie Du; Zhaoyong Hu; Guofeng Han; Patrice Delafontaine; Gabriela Garcia; William E. Mitch

Animal studies suggest that increased levels of circulating angiotensin II (AngII) could contribute to the loss of lean body mass in chronic kidney disease, but the mechanism by which this occurs is unclear. Here, AngII infusion increased circulating IL-6 and its hepatic production in wild-type mice, suggesting that AngII-induced inflammation may trigger muscle loss. AngII infusion also stimulated the suppressor of cytokine signaling (SOCS3) in muscle, which led to loss of insulin receptor substrate 1 (IRS-1), thereby impairing insulin/IGF-1 signaling and enhancing protein degradation. All of these responses to AngII were suppressed in IL-6-deficient mice. Recombinant human IL-6 (rhIL-6) treatment of cultured myotubes only minimally increased SOCS3, however, suggesting the contribution of other mediators. Because AngII increases hepatic serum amyloid A (SAA) expression in an IL-6-dependent manner, we treated wild-type mice with rhIL-6 and an SAA1-overexpressing adenovirus; the combination led to a significantly greater increase in SOCS3 and decrease in IRS-1 compared with either rhIL-6 or SAA1 alone. We observed similar effects on SOCS3 and IRS-1 when we treated cultured muscle myotubes with rhIL-6 and SAA1. Taken together, these results suggest an interorgan response to high levels of AngII: Hepatic production of IL-6 and SAA increases, and these mediators act synergistically to impair insulin/IGF-1 signaling, which promotes muscle proteolysis. Targeting the high levels of IL-6 and SAA in catabolic disorders might be a therapeutic approach to prevent muscle wasting.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Insulin-Like Growth Factor-1 Receptor Activation Inhibits Oxidized LDL-Induced Cytochrome C Release and Apoptosis via the Phosphatidylinositol 3 Kinase/Akt Signaling Pathway

Yangxin Li; Yusuke Higashi; Hiroyuki Itabe; Yao-Hua Song; Jie Du; Patrice Delafontaine

Objective—We have shown previously that oxidized LDL decreases insulin-like growth factor-1 (IGF-1) and IGF-1 receptor expression in vascular smooth muscle cells and that IGF-1 and IGF-1 receptor expression are reduced in the deep intima of early atherosclerotic lesions. Because oxidized LDL is potentially important for the depletion of vascular smooth muscle cells contributing to plaque destabilization, we studied the role of IGF-1 in oxidized LDL-induced apoptosis. Methods and Results—We provide evidence that oxidized LDL-induced apoptosis is caused by decreased mitochondrial membrane potential and increased cytochrome C release in human aortic vascular smooth muscle cells. Overexpression of the IGF-1 receptor by using an adenovirus completely abrogated these effects. The antiapoptotic function of the IGF-1 receptor was associated with increased Akt kinase activity and increased expression of phosphorylated Bad. Moreover, a dominant-negative p85 phosphatidylinositol 3-kinase adenovirus blocked the capacity of the IGF-1 receptor to prevent oxidized LDL-induced apoptosis. Conclusions—Our data demonstrate that IGF-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway and suggest that genetic or pharmacological activation of the IGF-1 receptor may be a useful strategy to stabilize atherosclerotic plaques.


Cellular Signalling | 2010

WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death

Balachandar Venkatesan; Sumanth D. Prabhu; Kaliyamurthi Venkatachalam; Srinivas Mummidi; Anthony J. Valente; Robert A. Clark; Patrice Delafontaine; Bysani Chandrasekar

The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K-Akt-dependent GSK3beta phosphorylation and beta-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.


American Journal of Physiology-heart and Circulatory Physiology | 2010

IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression

Tadashi Yoshida; Laura Semprun-Prieto; Sergiy Sukhanov; Patrice Delafontaine

Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo.


Trends in Endocrinology and Metabolism | 2010

IGF-1, oxidative stress, and atheroprotection

Yusuke Higashi; Sergiy Sukhanov; Asif Anwar; Shaw-Yung Shai; Patrice Delafontaine

Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1.


Cellular Signalling | 2012

Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1.

Anthony J. Valente; Tadashi Yoshida; Jason D. Gardner; Naveen K. Somanna; Patrice Delafontaine; Bysani Chandrasekar

The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation

Venkatapuram Seenu Reddy; Sumanth D. Prabhu; Srinivas Mummidi; Anthony J. Valente; Balachandar Venkatesan; Prakashsrinivasan Shanmugam; Patrice Delafontaine; Bysani Chandrasekar

IL-18 and the extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) stimulate the expression of proinflammatory cytokines and MMPs and are elevated in myocardial hypertrophy, remodeling, and failure. Here, we report several novel findings in primary cardiomyocytes treated with IL-18. First, IL-18 activated multiple transcription factors, including NF-κB (p50 and p65), activator protein (AP)-1 (cFos, cJun, and JunD), GATA, CCAAT/enhancer-binding protein, myocyte-specific enhancer-binding factor, interferon regulatory factor-1, p53, and specific protein (Sp)-1. Second, IL-18 induced EMMPRIN expression via myeloid differentiation primary response gene 88/IL-1 receptor-associated kinase/TNF receptor-associated factor-6/JNK-dependent Sp1 activation. Third, IL-18 induced a number of MMP genes, particularly MMP-9, at a rapid rate as well as tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 at a slower rate. Finally, the IL-18 induction of MMP-9 was mediated in part via EMMPRIN and through JNK- and ERK-dependent AP-1 activation and p38 MAPK-dependent NF-κB activation. These results suggest that the elevated expression of IL-18 during myocardial injury and inflammation may favor EMMPRIN and MMP induction and extracellular matrix degradation. Therefore, targeting IL-18 or its signaling pathways may be of potential therapeutic benefit in adverse remodeling.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18

Anthony J. Valente; Tadashi Yoshida; Subramanyam N. Murthy; Siva S.V.P. Sakamuri; Masato Katsuyama; Robert A. Clark; Patrice Delafontaine; Bysani Chandrasekar

The redox-sensitive transcription factors NF-κB and activator protein-1 (AP-1) are critical mediators of ANG II signaling. The promitogenic and promigratory factor interleukin (IL)-18 is an NF-κB- and AP-1-responsive gene. Therefore, we investigated whether ANG II-mediated smooth muscle cell (SMC) migration and proliferation involve IL-18. ANG II induced rat carotid artery SMC migration and proliferation and IL-18 and metalloproteinase (MMP)-9 expression via ANG II type 1 (AT(1)) receptor. ANG II-induced superoxide generation, NF-κB and AP-1 activation, and IL-18 and MMP-9 induction were all markedly attenuated by losartan, diphenyleneiodonium chloride (DPI), and Nox1 knockdown. Similar to ANG II, addition of IL-18 also induced superoxide generation, activated NF-κB and AP-1, and stimulated SMC migration and proliferation, in part via Nox1, and both ANG II and IL-18 induced NOX1 transcription in an AP-1-dependent manner. AT(1) physically associates with Nox1 in SMC, and ANG II enhanced this binding. Interestingly, exogenous IL-18 neither induced AT(1) binding to Nox1 nor enhanced the ANG II-induced increase in AT(1)/Nox1 binding. Importantly, IL-18 knockdown, or pretreatment with IL-18 neutralizing antibodies, or IL-18 binding protein, all attenuated the migratory and mitogenic effects of ANG II. Continuous infusion of ANG II for 7 days induced carotid artery hyperplasia in rats via AT(1) and was associated with increased AT(1)/Nox1 binding (despite lower AT(1) levels); increased DPI-inhibitable superoxide production; increased phospho-IKKβ, JNK, p65, and c-Jun; and induction of IL-18 and MMP-9 in endothelium-denuded carotid arteries. These results indicate that IL-18 amplifies the ANG II-induced, redox-dependent inflammatory cascades by activating similar promitogenic and promigratory signal transduction pathways. The ANG II/Nox1/IL-18 pathway may be critical in hyperplastic vascular diseases, including atherosclerosis and restenosis.

Collaboration


Dive into the Patrice Delafontaine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Valente

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge