Patrice Guillon
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrice Guillon.
Emerging microbes & infections | 2014
Peijun Ren; Gang Zou; Benjamin Bailly; Shanshan Xu; Mei Zeng; Xinsheng Chen; Liang Shen; Ying Zhang; Patrice Guillon; Fernando Arenzana-Seisdedos; Philippe Buchy; Jian Li; Mark von Itzstein; Qihan Li; Ralf Altmeyer
Enterovirus 71 (EV71) causes severe central nervous system infections, leading to cardiopulmonary complications and death in young children. There is an urgent unmet medical need for new pharmaceutical agents to control EV71 infections. Using a multidisciplinary approach, we found that the approved pediatric antiparasitic drug suramin blocked EV71 infectivity by a novel mechanism of action that involves binding of the naphtalentrisulonic acid group of suramin to the viral capsid. Moreover, we demonstrate that when suramin is used in vivo at doses equivalent to or lower than the highest dose already used in humans, it significantly decreased mortality in mice challenged with a lethal dose of EV71 and peak viral load in adult rhesus monkeys. Thus, suramin inhibits EV71 infection by neutralizing virus particles prior to cell attachment. Consequently, these findings identify suramin as a clinical candidate for further development as a therapeutic or prophylactic treatment for severe EV71 infection.
Nature Communications | 2014
Patrice Guillon; Larissa Dirr; Ibrahim Mustafa El-Deeb; Moritz Winger; Benjamin Bailly; Thomas Erwin Haselhorst; Jeffrey Clifford Dyason; Mark von Itzstein
Human parainfluenza viruses (hPIVs) cause upper and lower respiratory tract disease in children that results in a significant number of hospitalizations and impacts health systems worldwide. To date, neither antiviral drugs nor vaccines are approved for clinical use against parainfluenza virus, which reinforces the urgent need for new therapeutic discovery strategies. Here we use a multidisciplinary approach to develop potent inhibitors that target a structural feature within the hPIV type 3 haemagglutinin-neuraminidase (hPIV-3 HN). These dual-acting designer inhibitors represent the most potent designer compounds and efficiently block both hPIV cell entry and virion progeny release. We also define the binding mode of these inhibitors in the presence of whole-inactivated hPIV and recombinantly expressed hPIV-3 HN by Saturation Transfer Difference NMR spectroscopy. Collectively, our study provides an antiviral preclinical candidate and a new direction towards the discovery of potential anti-parainfluenza drugs.
Angewandte Chemie | 2015
Larissa Dirr; Ibrahim Mustafa El-Deeb; Patrice Guillon; Cindy J. Carroux; Leonard M. G. Chavas; Mark von Itzstein
Human parainfluenza virus type 3 (hPIV-3) is one of the leading causes for lower respiratory tract disease in children, with neither an approved antiviral drug nor vaccine available to date. Understanding the catalytic mechanism of human parainfluenza virus haemagglutinin-neuraminidase (HN) protein is key to the design of specific inhibitors against this virus. Herein, we used (1) H NMR spectroscopy, X-ray crystallography, and virological assays to study the catalytic mechanism of the HN enzyme activity and have identified the conserved Tyr530 as a key amino acid involved in catalysis. A novel 2,3-difluorosialic acid derivative showed prolonged enzyme inhibition and was found to react and form a covalent bond with Tyr530. Furthermore, the novel derivative exhibited enhanced potency in virus blockade assays relative to its Neu2en analogue. These outcomes open the door for a new generation of potent inhibitors against hPIV-3 HN.
Scientific Reports | 2016
Benjamin Bailly; C.-A. Richard; G. Sharma; L. Wang; L. Johansen; J. Cao; V. Pendharkar; D.-C. Sharma; M. Galloux; Y. Wang; R. Cui; Gang Zou; Patrice Guillon; M. von Itzstein; J.-F. Eléouët; Ralf Altmeyer
Human respiratory syncytial virus (hRSV) is a leading cause of acute lower respiratory tract infection in infants, elderly and immunocompromised individuals. To date, no specific antiviral drug is available to treat or prevent this disease. Here, we report that the Smoothened receptor (Smo) antagonist cyclopamine acts as a potent and selective inhibitor of in vitro and in vivo hRSV replication. Cyclopamine inhibits hRSV through a novel, Smo-independent mechanism. It specifically impairs the function of the hRSV RNA-dependent RNA polymerase complex notably by reducing expression levels of the viral anti-termination factor M2-1. The relevance of these findings is corroborated by the demonstration that a single R151K mutation in M2-1 is sufficient to confer virus resistance to cyclopamine in vitro and that cyclopamine is able to reduce virus titers in a mouse model of hRSV infection. The results of our study open a novel avenue for the development of future therapies against hRSV infection.
Scientific Reports | 2016
Benjamin Bailly; Larissa Dirr; Ibrahim Mustafa El-Deeb; Ralf Altmeyer; Patrice Guillon; Mark von Itzstein
Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs.
Journal of Medicinal Chemistry | 2014
Ibrahim Mustafa El-Deeb; Patrice Guillon; Moritz Winger; Tanguy Eveno; Thomas Erwin Haselhorst; Jeffrey Clifford Dyason; Mark von Itzstein
Human parainfluenza virus type 1 is the major cause of croup in infants and young children. There is currently neither vaccine nor clinically effective treatment for parainfluenza virus infection. Hemagglutinin-neuraminidase glycoprotein is a key protein in viral infection, and its inhibition has been a target for 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid (Neu5Ac2en)-based inhibitor development. In this study, we explore the effect of C-5 modifications on the potency of Neu5Ac2en derivatives that target the human parainfluenza type-1 hemagglutinin-neuraminidase protein. Our study demonstrates that the replacement of the Neu5Ac2en C-5 acetamido moiety with more hydrophobic alkane-based moieties improves the inhibitory potency for both hemagglutinin-neuraminidase functions. These findings shed light on the importance of C-5 substitution on Neu5Ac2en in the design of novel sialic acid-based inhibitors that target human parainfluenza type-1 hemagglutinin-neuraminidase.
Scientific Reports | 2017
Larissa Dirr; Ibrahim Mustafa El-Deeb; Leonard M. G. Chavas; Patrice Guillon; Mark von Itzstein
Human parainfluenza viruses represent a leading cause of lower respiratory tract disease in children, with currently no available approved drug or vaccine. The viral surface glycoprotein haemagglutinin-neuraminidase (HN) represents an ideal antiviral target. Herein, we describe the first structure-based study on the rearrangement of key active site amino acid residues by an induced opening of the 216-loop, through the accommodation of appropriately functionalised neuraminic acid-based inhibitors. We discovered that the rearrangement is influenced by the degree of loop opening and is controlled by the neuraminic acid’s C-4 substituent’s size (large or small). In this study, we found that these rearrangements induce a butterfly effect of paramount importance in HN inhibitor design and define criteria for the ideal substituent size in two different categories of HN inhibitors and provide novel structural insight into the druggable viral HN protein.
ACS Chemical Biology | 2018
Mauro Pascolutti; Larissa Dirr; Patrice Guillon; Annelies Van Den Bergh; Thomas Ve; Robin Joy Thomson; Mark von Itzstein
A novel approach to human parainfluenza virus 3 (hPIV-3) inhibitor design has been evaluated by targeting an unexplored pocket within the active site region of the hemagglutinin-neuraminidase (HN) of the virus that is normally occluded upon ligand engagement. To explore this opportunity, we developed a highly efficient route to introduce nitrogen-based functionalities at the naturally unsubstituted C-3 position on the neuraminidase inhibitor template N-acyl-2,3-dehydro-2-deoxy-neuraminic acid ( N-acyl-Neu2en), via a regioselective 2,3-bromoazidation. Introduction of triazole substituents at C-3 on this template provided compounds with low micromolar inhibition of hPIV-3 HN neuraminidase activity, with the most potent having 48-fold improved potency over the corresponding C-3 unsubstituted analogue. However, the C-3-triazole N-acyl-Neu2en derivatives were significantly less active against the hemagglutinin function of the virus, with high micromolar IC50 values determined, and showed insignificant in vitro antiviral activity. Given the different pH optima of the HN proteins neuraminidase (acidic pH) and hemagglutinin (neutral pH) functions, the influence of pH on inhibitor binding was examined using X-ray crystallography and STD NMR spectroscopy, providing novel insights into the multifunctionality of hPIV-3 HN. While the 3-phenyltriazole- N-isobutyryl-Neu2en derivative could bind HN at pH 4.6, suitable for neuraminidase inhibition, at neutral pH binding of the inhibitor was substantially reduced. Importantly, this study clearly demonstrates for the first time that potent inhibition of HN neuraminidase activity is not necessarily directly correlated with a strong antiviral activity, and suggests that strong inhibition of the hemagglutinin function of hPIV HN is crucial for potent antiviral activity. This highlights the importance of designing hPIV inhibitors that primarily target the receptor-binding function of hPIV HN.
MedChemComm | 2017
Ibrahim Mustafa El-Deeb; Patrice Guillon; Larissa Dirr; Mark von Itzstein
Archive | 2016
Larissa Dirr; Ibrahim Mustafa El-Deeb; Ralf Altmeyer; Patrice Guillon