Patrice Hildgen
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrice Hildgen.
Journal of Controlled Release | 2002
E. Ruel-Gariépy; Grégoire Leclair; Patrice Hildgen; A. Gupta; Jean-Christophe Leroux
A novel injectable in situ gelling thermosensitive chitosan-beta-glycerophosphate (C-GP) formulation has been recently proposed for tissue repair and drug delivery. The system can sustain the release of macromolecules over a period of several hours to a few days. However, with low-molecular-weight hydrophilic compounds, the release is generally completed within 24 h. In this study, liposomes were added to the C-GP solution and their effect on the viscoelastic properties of the system and release kinetics of encapsulated carboxyfluorescein was investigated. The gelation rate and gel strength were slightly increased by the presence of the liposomes. The in vitro release profiles demonstrated controlled delivery over at least 2 weeks. The release rate strongly depended on the liposome size and composition (i.e. addition of cholesterol), and on the presence of phospholipase in the release medium. The kinetics was not substantially modified when using liposomes prepared with a negatively-charged lipid or a lipid having a high phase transition temperature. These results indicate that the liposome-C-GP system rapidly gels at body temperature, and can sustain the delivery of low-molecular-weight hydrophilic compounds. A mathematical model was proposed to characterize the release kinetics.
Molecular Pharmaceutics | 2008
Renu Singh Dhanikula; Anteneh Argaw; Jean-François Bouchard; Patrice Hildgen
Therapeutic benefit in glial tumors is often limited due to low permeability of delivery systems across the blood-brain barrier (BBB), drug resistance, and poor penetration into the tumor tissue. In an attempt to overcome these hurdles, polyether-copolyester (PEPE) dendrimers were evaluated as drug carriers for the treatment of gliomas. Dendrimers were conjugated to d-glucosamine as the ligand for enhancing BBB permeability and tumor targeting. The efficacy of methotrexate (MTX)-loaded dendrimers was established against U87 MG and U 343 MGa cells. Permeability of rhodamine-labeled dendrimers and MTX-loaded dendrimers across the in vitro BBB model and their distribution into avascular human glioma tumor spheroids was also studied. Glucosylated dendrimers were found to be endocytosed in significantly higher amounts than nonglucosylated dendrimers by both the cell lines. IC 50 of MTX after loading in dendrimers was lower than that of the free MTX, suggesting that loading MTX in PEPE dendrimers increased its potency. Similar higher activity of MTX-loaded glucosylated and nonglucosylated dendrimers was found in the reduction of tumor spheroid size. These MTX-loaded dendrimers were able to kill even MTX-resistant cells highlighting their ability to overcome MTX resistance. In addition, the amount of MTX-transported across BBB was three to five times more after loading in the dendrimers. Glucosylation further increased the cumulative permeation of dendrimers across BBB and hence increased the amount of MTX available across it. Glucosylated dendrimers distributed through out the avascular tumor spheroids within 6 h, while nonglucosylated dendrimers could do so in 12 h. The results show that glucosamine can be used as an effective ligand not only for targeting glial tumors but also for enhanced permeability across BBB. Thus, glucosylated PEPE dendrimers can serve as potential delivery system for the treatment of gliomas.
Journal of Controlled Release | 2014
Jean-Michel Rabanel; Patrice Hildgen; Xavier Banquy
Injectable drug nanocarriers have greatly benefited in their clinical development from the addition of a superficial hydrophilic corona to improve their cargo pharmacokinetics. The most studied and used polymer for this purpose is poly(ethylene glycol), PEG. However, in spite of its wide use for over two decades now, there is no general consensus on the optimum PEG chain coverage-density and size required to escape from the mononuclear phagocyte system and to extend the circulation time. Moreover, cellular uptake and active targeting may have conflicting requirements in terms of surface properties of the nanocarriers which complicate even more the optimization process. These persistent issues can be largely attributed to the lack of straightforward characterization techniques to assess the coverage-density, the conformation or the thickness of a PEG layer grafted or adsorbed on a particulate drug carrier and is certainly one of the main reasons why so few clinical applications involving PEG coated particle-based drug delivery systems are under clinical trial so far. The objective of this review is to provide the reader with a brief description of the most relevant techniques used to assess qualitatively or quantitatively PEG chain coverage-density, conformation and layer thickness on polymeric nanoparticles. Emphasis has been made on polymeric particle (solid core) either made of copolymers containing PEG chains or modified after particle formation. Advantages and limitations of each technique are presented as well as methods to calculate PEG coverage-density and to investigate PEG chains conformation on the NP surface.
International Journal of Pharmaceutics | 2003
V. Lemaire; J. Bélair; Patrice Hildgen
Biodegradable, porous microspheres exhibit a wide range of release profiles. We propose in this paper a unifying approach based on the dual action of diffusion and erosion to establish which mechanisms are responsible for the variety of release kinetics observed during in vitro experiments. Our modeling procedure leads to the partitioning of the matrix into multiple, identical elements, thus simplifying significantly the mathematical and numerical treatment of the problem. The model equations cannot be solved analytically, since the domain contains a moving interface, and must therefore be solved numerically, using specific methods designed for that purpose. Our model confirms the major role that the relative dominance between diffusion and erosion plays in the release kinetics. In particular, the velocity of erosion, the effective diffusion coefficient of the drug molecule in the wetted polymer, the average pore length, and the initial pore diameter are sensitive parameters, whereas the porosity and the effective diffusion coefficient of the drug in the solvent-filled pores is seen to have little influence, if any, on the release kinetics. The model is confirmed by using release data from biodegradable microspheres with different ratios of low and high molecular weight PLA. Excellent goodness of fit is achieved by varying two parameters for all types of experimental kinetics: from the typical square root of time profile to zero-order kinetics to concave release curves. We are also able to predict, by interpolation, release curves from microspheres made of intermediate, untested ratios of PLA by using a relation between two model parameters.
Soft Matter | 2009
Xavier Banquy; Fernando Suarez; Anteneh Argaw; Jean-Michel Rabanel; Peter Grutter; Jean-François Bouchard; Patrice Hildgen; Suzanne Giasson
Uptake and intracellular trafficking of hydrogel nanoparticles (NPs) of N,N-diethyl acrylamide and 2-hydroxyethyl methacrylate crosslinked with N,N′-methylene-bis-acrylamide were studied with a RAW 264.7 murine macrophage cell line. Results show that the uptake rate, the mechanism of internalization and the concentration of internalized NPs are correlated to the NP Young modulus. Soft NPs are found to be internalized preferentially via macropinocytosis while the uptake of stiff NPs is mediated by a clathrin-dependent mechanism. NPs with an intermediate Young modulus exhibit multiple uptake mechanisms. The accumulation rate of the NPs into lysosomal compartments of the cell is also dependent on the NP elasticity. Our results suggest that control over the mechanical properties of hydrogel NPs can be used to tailor the cellular uptake mechanism and kinetics of drug delivery.
Biotechnology Progress | 2009
Jean-Michel Rabanel; Xavier Banquy; Hamza Zouaoui; Mohamed Mokhtar; Patrice Hildgen
Cell encapsulation in microcapsules allows the in situ delivery of secreted proteins to treat different pathological conditions. Spherical microcapsules offer optimal surface‐to‐volume ratio for protein and nutrient diffusion, and thus, cell viability. This technology permits cell survival along with protein secretion activity upon appropriate host stimuli without the deleterious effects of immunosuppressant drugs. Microcapsules can be classified in 3 categories: matrix‐core/shell microcapsules, liquid‐core/shell microcapsules, and cells‐core/shell microcapsules (or conformal coating). Many preparation techniques using natural or synthetic polymers as well as inorganic compounds have been reported. Matrix‐core/shell microcapsules in which cells are hydrogel‐embedded, exemplified by alginates capsule, is by far the most studied method. Numerous refinement of the technique have been proposed over the years such as better material characterization and purification, improvements in microbead generation methods, and new microbeads coating techniques. Other approaches, based on liquid‐core capsules showed improved protein production and increased cell survival. But aside those more traditional techniques, new techniques are emerging in response to shortcomings of existing methods. More recently, direct cell aggregate coating have been proposed to minimize membrane thickness and implants size. Microcapsule performances are largely dictated by the physicochemical properties of the materials and the preparation techniques employed. Despite numerous promising pre‐clinical results, at the present time each methods proposed need further improvements before reaching the clinical phase.
Current Medicinal Chemistry | 2012
Jean-Michel Rabanel; Valéry Aoun; Igor Elkin; Mohamed Mokhtar; Patrice Hildgen
Poor bioavailability and poor pharmacokinetic characteristics are some of the leading causes of drug development failure. Therefore, poorly-soluble drugs, fragile proteins or nucleic acid products may benefit from their encapsulation in nanosized vehicles, providing enhanced solubilization, protection against degradation, and increased access to pathological compartments. A key element for the success of drug-loaded nanocarriers is their ability to either cross biological barriers themselves, or allow loaded drugs to traverse them to achieve optimal pharmacological action at pathological sites. Depending on the mode of administration, nanocarriers may have to cross different physiological barriers in their journey towards their target. In this review, the crossing of biological barriers by passive targeting strategies will be presented for intravenous delivery (vascular endothelial lining, particularly for tumor vasculature and blood brain barrier targeting), oral administration (gastrointestinal lining), and upper airway administration (pulmonary epithelium). For each specific barrier, background information will be provided on the structure and biology of the tissues involved as well as available pathways for nano-objects or loaded drugs (diffusion and convection through fenestration, transcytosis, tight junction crossing, etc.). The determinants of passive targeting - size, shape, surface chemistry, surface patterning of nanovectors - will be discussed in light of current results. Perspectives on each mode of administration will be presented. The focus will be on polymeric nanoparticles and dendrimers, although advances in liposome technology will be also reported as they represent the largest body in the drug delivery literature.
Pharmaceutical Research | 1998
Francois-Xavier Lacasse; M. C. Filion; Nigel C. Phillips; Emmanuel Escher; Jean N. McMullen; Patrice Hildgen
AbstractPurpose. The objective of this work was to determine plasma protein adsorption and macrophage phagocytosis of biodegradable polyanhydride, polylactic acid and polylactic-co-glycolic acid microspheres prepared by both spray-drying and solvent evaporation techniques. Methods. Microspheres were characterized by scanning electron microscopy (SEM), confocal laser microscopy, particle size distribution and zeta (ζ) potential determination. Plasma protein adsorption onto the microspheres was determined using a fluoroaldehyde reagent. Phagocytosis was evaluated by incubating microspheres containing the angiotensin II antagonist, L-158,809, with the macrophages in the presence or absence of the phagocytosis inhibitor cythochalasin D. The extent of phagocytosis was established by fluorescence determination of L-158,809 and by optical microscopy. The effect of amphiphilic poly(ethylene glycol) (PEG) derivatives on phagocytosis was determined using PEG-distearate incorporated into the microspheres. Results. The average diameter of the microspheres, which depended on the polymer and the initial formulation, ranged from 0.9 to 3.2 micrometers. ζ potential studies showed strong negative values irrespective of the polymer used for the spray-dried formulations. The ζ potential was masked by the incorporation of PEG 400- or PEG 1,400-distearate in the formulation. Confocal laser microscopy showed a homogenous dispersion of PEG (measured as PEG-fluorescein) in the microspheres. Protein adsorption was not observed for any of the microsphere formulations following incubation with bovine serum. Incubation of microspheres with murine macrophages showed that PEG-distearate inhibited phagocytosis at appropriate levels (0,1% w/w). Higher levels >1% w/w of PEG-distearate) resulted in enhanced association with macrophages, despite the presence of the phagocytosis inhibitor cytochalasin D, indicating fusion between the microspheres and the plasma membrane. Conclusions. These results demonstrate that spray-dried PEG-containing microspheres can be manufactured and that an appropriate concentration of this excipient in microspheres results in decreased phagocytosis.
International Journal of Pharmaceutics | 2011
Sherief Essa; Jean Michel Rabanel; Patrice Hildgen
In our previous study, PEG-g-PLA nanoparticles were developed and characterized. The aim of the present work is to investigate the effect of PEG grafting density (% PEG inserted onto poly(d, l)-lactide, PLA backbone) on both physicochemical and biological properties (mainly plasma protein binding and in vitro macrophage uptake) of PEG-g-PLA NPs. Rhodamine B (RHO) loaded NPs were prepared from a 1:1 (wt/wt) blend of PLA and PEG-g-PLA copolymer of varying PEG grafting density (1, 7, or 20% mol/mol of lactic acid monomer) by an o/w emulsion solvent evaporation method. These NPs were characterized with regard to their morphology, size, surface charge, loading efficiency, and rhodamine release. The extent of protein adsorption to the surface of different NPs was qualitatively investigated by dynamic light scattering technique. Additionally, the in vitro macrophage uptake following incubation of RAW 264.7 cells with rhodamine loaded PEG-g-PLA and PLA particles was investigated by confocal laser scanning microscopy (CLSM). The amount of NPs phagocytosed following incubation of RAW 264.7 cells with different concentrations of rhodamine loaded PLA or pegylated NPs for 24h at 37 °C was also determined by fluorescence spectroscopy. ALL lyophilized NPs showed larger diameter in the range of 300-400 nm compared to freshly prepared NPs suspension indicating particle aggregation upon lyophilization. % EE of rhodamine was found to be between 10% and 68% wt/wt depending on PEG grafting density. The higher the grafting density of PEG over PLA backbone, the more the entrapment efficiency. All pegylated NPs showed low zeta potential (close to zero) values. In vitro release analysis revealed that rhodamine leaked from all nanoparticles at a very slow rate at physiological pH, thus making it suitable for both imaging and uptake studies with RAW 264.7 cells. All PEG-g-PLA NPs of different PEG grafting density were well tolerated and exhibited no toxicity to RAW 264.7 cells as seen by cell proliferation assays. Cellular uptake of NPs was mainly dependent on polymer type as well as PEG grafting density. Grafted copolymer NPs resulted in lower degree of macrophage uptake compared to PLA NPs in macrophages cell lines. The higher the PEG grafting density, the lower the uptake of NPs by macrophage cells. Minimum NPs uptake for all the investigated concentrations was achieved when the PEG grafting density was 7% mol/mol of lactic acid. When increasing the PEG grafting density in the nanoparticles above 7%, no significant reduction in NPs phagocytosis was achieved. Thus, this study shows that the optimal PEG density required for designing stealth PEG-g-PLA NPs suitable for drug delivery applications might vary from 4 to 7%.
Journal of Biomedical Materials Research Part A | 2008
Shilpa Sant; Suzie Poulin; Patrice Hildgen
The aim of the present study was to evaluate the cellular interaction of nanoparticles (NPs) prepared from different pegylated polymers and elucidate the effect of polymer architecture, for instance, grafted versus block copolymer on their cellular uptake. Fluorescein-labeled NPs of four different polymers, viz., poly(D,L-lactide) (PLA), poly(ethylene glycol)(1%)-graft-poly(D,L-lactide) (PEG(1%)-g-PLA), poly(ethylene glycol)(5%)-graft-poly(D,L-lactide) (PEG(5%)-g-PLA), and (poly(D,L-lactide)-block-poly(ethylene glycol)-block-poly(D,L-lactide))(n) multiblock copolymer (PLA-PEG-PLA)(n) were prepared. These NPs were characterized for their size, zeta-potential, and surface morphology. XPS studies revealed possibility of chemical interaction between PLA-COOH groups and PVA-OH groups, thus making it difficult to be washed off the NP surface completely. Grafted polymer NPs showed more surface PEG coverage than (PLA-PEG-PLA)(n) despite of their comparatively lower PEG content. The results of surface properties were translated into protein binding showing least amount of proteins bound to grafted copolymer NPs as against multiblock copolymer NPs. NPs showed no toxicity to RAW 264.7 cells. Cellular uptake of NPs was temperature and concentration-dependent as well as involved clathrin-mediated processes. Thus, this study confirms the importance of polymer architecture in determining the surface properties and hence, protein binding and cellular interactions of NPs. Also, it was shown that grafted copolymer NPs reduced macrophage uptake as compared to multiblock copolymer although mechanisms different than phagocytosis were involved.