Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice Le Calvez is active.

Publication


Featured researches published by Patrice Le Calvez.


Publications Mathématiques de l'IHÉS | 2005

Une version feuilletée équivariante du théorème de translation de Brouwer

Patrice Le Calvez

The Brouwer’s plane translation theorem asserts that for a fixed point free orientation preserving homeomorphism f of the plane, every point belongs to a Brouwer line: a proper topological embedding C of R, disjoint from its image and separating f(C) and f–1(C). Suppose that f commutes with the elements of a discrete group G of orientation preserving homeomorphisms acting freely and properly on the plane. We will construct a G-invariant topological foliation of the plane by Brouwer lines. We apply this result to give simple proofs of previous results about area-preserving homeomorphisms of surfaces and to prove the following theorem: any Hamiltonian homeomorphism of a closed surface of genus g ≥ 1 has infinitely many contractible periodic points.


Topology | 1999

UNE PROPRIÉTÉ DYNAMIQUE DES HOMÉOMORPHISMES DU PLAN AU VOISINAGE D’UN POINT FIXE D’INDICE >1

Patrice Le Calvez

Nous montrons qu’un homeomorphisme f du plan preservant l’orientation defini au voisinage d’un point fixe isole d’indice de Lefschetz strictement superieur a 1 admet dans ce voisinage un domaine positivement ou negativement errant. Une telle situation est bien sur impossible quand f preserve l’aire et l’indice ecst donc necessairement inferieur ou egal a 1. We prove that every orientation preserving homeomorphism f of the plane defined locally around an isolated fixed point of Lefschetz index strictly larger than 1 has a positively or negatively wandering domain in this neighbourhood. Such a situation cannot occur when f is area preserving and the index must be smaller or equal to 1.


Proceedings of the American Mathematical Society | 2001

Rotation numbers in the infinite annulus

Patrice Le Calvez

Using the notion of free transverse triangulation we prove that the rotation number of a given probability measure invariant by a homeomorphism of the open annulus depends continuously on the homeomorphism under some boundedness conditions.


Ergodic Theory and Dynamical Systems | 2007

Drift orbits for families of twist maps of the annulus

Patrice Le Calvez

We generalize the classical result of J. Mather stating the existence of a drift orbit inside a region of instability of an exact-symplectic positive twist map, to the case of a finite family


Geometry & Topology | 2006

Une nouvelle preuve du théorème de point fixe de Handel

Patrice Le Calvez

{\cal F}


Ergodic Theory and Dynamical Systems | 1997

Une généralisation du théorème de Conley–Zehnder aux homéomorphismes du tore de dimension deux

Patrice Le Calvez

of such maps. A special case is the case where the maps


Nonlinearity | 1999

STABLY NONSYNCHRONIZABLE MAPS OF THE PLANE

Patrice Le Calvez; Marco Martens; Charles Tresser; Patrick Worfolk

F\in{\cal F}


Annales Scientifiques De L Ecole Normale Superieure | 2003

Dynamique des homéomorphismes du plan au voisinage d'un point fixe

Patrice Le Calvez

have no common invariant continuous graph. We prove the existence of a sequence


Annales Scientifiques De L Ecole Normale Superieure | 2008

Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes ?

Patrice Le Calvez

(z_i)_{i\in\mathbb{Z}}


Annales Scientifiques De L Ecole Normale Superieure | 1987

Propriétés dynamiques des régions d'instabilité

Patrice Le Calvez

in

Collaboration


Dive into the Patrice Le Calvez's collaboration.

Researchain Logo
Decentralizing Knowledge