Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice This is active.

Publication


Featured researches published by Patrice This.


Theoretical and Applied Genetics | 2004

Development of a standard set of microsatellite reference alleles for identification of grape cultivars

Patrice This; A. Jung; P. Boccacci; J. Borrego; R. Botta; L. Costantini; M. Crespan; G. S. Dangl; C. Eisenheld; F. Ferreira-Monteiro; S. Grando; J. Ibáñez; Thierry Lacombe; V. Laucou; R. Magalhães; C. P. Meredith; N. Milani; Enrico Peterlunger; F. Regner; L. Zulini; E. Maul

In order to investigate the comparability of microsatellite profiles obtained in different laboratories, ten partners in seven countries analyzed 46 grape cultivars at six loci (VVMD5, VVMD7, VVMD27, VVS2, VrZAG62, and VrZAG79). No effort was made to standardize equipment or protocols. Although some partners obtained very similar results, in other cases different absolute allele sizes and, sometimes, different relative allele sizes were obtained. A strategy for data comparison by means of reference to the alleles detected in well-known cultivars was proposed. For each marker, each allele was designated by a code based on the name of the reference cultivar carrying that allele. Thirty-three cultivars, representing from 13 to 23 alleles per marker, were chosen as references. After the raw data obtained by the different partners were coded, more than 97% of the data were in agreement. Minor discrepancies were attributed to errors, suboptimal amplification and visualization, and misscoring of heterozygous versus homozygous allele pairs. We have shown that coded microsatellite data produced in different laboratories with different protocols and conditions can be compared, and that it is suitable for the identification and SSR allele characterization of cultivars. It is proposed that the six markers employed here, already widely used, be adopted as a minimal standard marker set for future grapevine cultivar analyses, and that additional cultivars be characterized by means of the coded reference alleles presented here. The complete database is available at http://www.genres.de/eccdb/vitis/. Cuttings of the 33 reference cultivars are available on request from the Institut National de la Recherche Agronomique Vassal collection ([email protected]).


Theoretical and Applied Genetics | 2007

Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1

Patrice This; Thierry Lacombe; Molly Cadle-Davidson; Christopher L. Owens

During the process of crop domestication and early selection, numerous changes occur in the genetic and physiological make-up of crop plants. In grapevine (Vitis vinifera) numerous changes have occurred as a result of human selection, including the emergence of hermaphroditism and greatly increased variation in berry color. This report examines the effect of human selection on variable skin color by examining the variation present in the gene VvmybA1, a transcriptional regulator of anthocyanin biosynthesis. In over 200 accessions of V. vinifera, the insertion of the retroelement Gret1 in the promoter region of VvmybA1 was in strong association with the white-fruited phenotype. This retroelement was inserted at the same location for each individual in which it was present. Additional polymorphisms in the VvmybA1 gene were also strongly associated with red or pink fruited accessions, including variation that was generated by the excision of Gret1 from the promoter of VvmybA1. Differences in nucleotide diversity were observed between the white and pigmented alleles of VvmybA1, suggesting that the white allele arose only once or a limited number of times. Rarely, association of Gret1 with the white fruited phenotype was not observed, suggesting that the white phenotype can also be obtained through mutation in additional genes. These results provide evidence that variation in one transcriptional regulator has generated an allelic series strongly associated with fruit color variation in cultivated grapevine. These findings provide information about the evolution of grapes since domestication and have direct implications for the regulation of fruit and wine quality of this important crop plant.


Genetics | 2009

Quantitative Genetic Bases of Anthocyanin Variation in Grape ( Vitis vinifera L. ssp. sativa ) Berry: A Quantitative Trait Locus to Quantitative Trait Nucleotide Integrated Study

Alexandre Fournier-Level; Loïc Le Cunff; Camilla Gomez; Agnès Doligez; Agnès Ageorges; Catherine Roux; Yves Bertrand; Jean-Marc Souquet; Véronique Cheynier; Patrice This

The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah × Grenache F1 pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.


BMC Plant Biology | 2008

Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa

Loïc Le Cunff; Alexandre Fournier-Level; Valérie Laucou; Silvia Vezzulli; Thierry Lacombe; Anne-Françoise Adam-Blondon; Jean-Michel Boursiquot; Patrice This

BackgroundThe first high quality draft of the grape genome sequence has just been published. This is a critical step in accessing all the genes of this species and increases the chances of exploiting the natural genetic diversity through association genetics. However, our basic knowledge of the extent of allelic variation within the species is still not sufficient. Towards this goal, we constructed nested genetic core collections (G-cores) to capture the simple sequence repeat (SSR) diversity of the grape cultivated compartment (Vitis vinifera L. subsp. sativa) from the worlds largest germplasm collection (Domaine de Vassal, INRA Hérault, France), containing 2262 unique genotypes.ResultsSub-samples of 12, 24, 48 and 92 varieties of V. vinifera L. were selected based on their genotypes for 20 SSR markers using the M-strategy. They represent respectively 58%, 73%, 83% and 100% of total SSR diversity. The capture of allelic diversity was analyzed by sequencing three genes scattered throughout the genome on 233 individuals: 41 single nucleotide polymorphisms (SNPs) were identified using the G-92 core (one SNP for every 49 nucleotides) while only 25 were observed using a larger sample of 141 individuals selected on the basis of 50 morphological traits, thus demonstrating the reliability of the approach.ConclusionThe G-12 and G-24 core-collections displayed respectively 78% and 88% of the SNPs respectively, and are therefore of great interest for SNP discovery studies. Furthermore, the nested genetic core collections satisfactorily reflected the geographic and the genetic diversity of grape, which are also of great interest for the study of gene evolution in this species.


Theoretical and Applied Genetics | 2013

Large-scale parentage analysis in an extended set of grapevine cultivars ( Vitis vinifera L.)

Thierry Lacombe; Jean-Michel Boursiquot; V. Laucou; Manuel Di Vecchi-Staraz; Jean-Pierre Péros; Patrice This

Inheritance of nuclear microsatellite markers (nSSR) has been proved to be a powerful tool to verify or uncover the parentage of grapevine cultivars. The aim of the present study was to undertake an extended parentage analysis using a large sample of Vitis vinifera cultivars held in the INRA “Domaine de Vassal” Grape Germplasm Repository (France). A dataset of 2,344 unique genotypes (i.e. cultivars without synonyms, clones or mutants) identified using 20 nSSR was analysed with FAMOZ software. Parentages showing a logarithm of odds score higher than 18 were validated in relation to the historical data available. The analysis first revealed the full parentage of 828 cultivars resulting in: (1) 315 original full parentages uncovered for traditional cultivars, (2) 100 full parentages confirming results established with molecular markers in prior papers and 32 full parentages that invalidated prior results, (3) 255 full parentages confirming pedigrees as disclosed by the breeders and (4) 126 full parentages that invalidated breeders’ data. Second, incomplete parentages were determined in 1,087 cultivars due to the absence of complementary parents in our cultivar sample. Last, a group of 276 genotypes showed no direct relationship with any other cultivar in the collection. Compiling these results from the largest set of parentage data published so far both enlarges and clarifies our knowledge of the genetic constitution of cultivated V. vinifera germplasm. It also allows the identification of the main genitors involved in varietal assortment evolution and grapevine breeding.


Journal of Heredity | 2009

Low Level of Pollen-Mediated Gene Flow from Cultivated to Wild Grapevine: Consequences for the Evolution of the Endangered Subspecies Vitis vinifera L. subsp. silvestris

Manuel Di Vecchi-Staraz; V. Laucou; Gérard Bruno; Thierry Lacombe; Sophie Gerber; Thibaut Bourse; Maurizio Boselli; Patrice This

A parentage and a paternity-based approach were tested for estimation of pollen-mediated gene flow in wild grapevine (Vitis vinifera L. subsp. silvestris), a wind-pollinated species occurring in Mediterranean Europe and southwestern Asia. For this purpose, 305 seedlings collected in 2 years at 2 locations in France from 4 wild female individuals and 417 wild individuals prospected from France and Italy were analyzed using 20 highly polymorphic microsatellite loci. Their profiles were compared with a database consisting of 3203 accessions from the Institut National de la Recherche Agronomique Vassal collection including cultivars, rootstocks, interspecific hybrids, and other wild individuals. Paternity was assigned for 202 (66.2%) of the 305 seedlings, confirming the feasibility of the method. Most of the fertilizing pollen could be assigned to wild males growing nearby. Estimates of pollen immigration from the cultivated compartment (i.e., the totality of cultivars) ranged from 4.2% to 26% from nearby vineyards and from hidden pollinators such as cultivars and rootstocks that had escaped from farms. In an open landscape, the pollen flow was correlated to the distance between individuals, the main pollinator being the closest wild male (accounting for 51.4-86.2% of the pollen flow). In a closed landscape, more complex pollination occurred. Analysis of the parentage of the 417 wild individuals also revealed relationships between nearby wild individuals, but in the case of 12 individuals (3%), analysis revealed pollen immigration from vineyards, confirming the fitness of the hybrid seedlings. These pollen fluxes may have a significant effect on the evolution of wild populations: on the one hand, the low level of pollen-mediated gene flow from cultivated to wild grapevine could contribute to a risk of extinction of the wild compartment (i.e., the totality of the wild individuals). On the other hand, pollen dispersal within the wild populations may induce inbreeding depression of wild grapevines.


Heredity | 2012

Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness.

B Mangin; Aurélie Siberchicot; S Nicolas; A Doligez; Patrice This; C Cierco-Ayrolles

Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r2 measure. In the present study, we tackled the problem of the bias of r2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r2 measure. The first one, rS2, uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, rV2, includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r2 measures, which actually captured ‘true’ linkage disequilibrium unlike the usual r2 measure.


BMC Plant Biology | 2010

A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.)

Francesco Emanuelli; Juri Battilana; Laura Costantini; Loïc Le Cunff; Jean-Michel Boursiquot; Patrice This; Maria Stella Grando

BackgroundThe sweet, floral flavor typical of Muscat varieties (Muscats), due to high levels of monoterpenoids (geraniol, linalool and nerol), is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L.) has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) with the major QTL positioned on chromosome 5.ResultsWe resequenced VvDXS in an ad hoc association population of 148 grape varieties, which included muscat-flavored, aromatic and neutral accessions as well as muscat-like aromatic mutants and non-aromatic offsprings of Muscats. Gene nucleotide diversity and intragenic linkage disequilibrium (LD) were evaluated. Structured association analysis revealed three SNPs in moderate LD to be significantly associated with muscat-flavored varieties. We identified a putative causal SNP responsible for a predicted non-neutral substitution and we discuss its possible implications for flavor metabolism. Network analysis revealed a major star-shaped cluster of reconstructed haplotypes unique to muscat-flavored varieties. Moreover, muscat-like aromatic mutants displayed unique non-synonymous mutations near the mutated site of Muscat genotypes.ConclusionsThis study is a crucial step forward in understanding the genetic regulation of muscat flavor in grapevine and it also sheds light on the domestication history of Muscats. VvDXS appears to be a possible human-selected locus in grapevine domestication and post-domestication. The putative causal SNP identified in Muscat varieties as well as the unique mutations identifying the muscat-like aromatic mutants under study may be immediately applied in marker-assisted breeding programs aimed at enhancing fragrance and aroma complexity respectively in table grape and wine cultivars.


Heredity | 2010

Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine ( Vitis vinifera L.)

Alexandre Fournier-Level; Thierry Lacombe; L. le Cunff; Jean-Michel Boursiquot; Patrice This

Polymorphisms in the grape transcription factor family VvMybA are responsible for variation in anthocyanin content in the berries of cultivated grapevine (Vitis vinifera L. subsp. sativa). Previous study has shown that white grapes arose through the mutation of two adjacent genes: a retroelement insertion in VvMybA1 and a single-nucleotide polymorphism mutation in VvMybA2. The purpose of this study was to understand how these mutations emerged and affected genetic diversity at neighbouring sites and how they structured the genetic diversity of cultivated grapevines. We sequenced a total of 3225 bp of these genes in a core collection of genetic resources, and carried out empirical selection tests, phylogenetic- and coalescence-based demographic analyses. The insertion in the VvMybA1 promoter was shown to have occurred recently, after the mutation of VvMybA2, both mutations followed by a selective sweep. The mutational pattern for these colour genes is consistent with progressively relaxed selection from constrained ancestral coloured haplotypes to light coloured and finally white haplotypes. Dynamics of population size in the VvMybA genes showed an initial exponential growth, followed by population size stabilization. Most ancestral haplotypes are found in cultivars from western region, whereas recent haplotypes are essentially present in table cultivars from eastern regions where intense breeding practices may have replaced the original diversity. Finally, the emergence of the white allele was followed by a recent strong exponential growth, showing a very fast diffusion of the initial white allele.


BMC Plant Biology | 2013

Genetic structure in cultivated grapevines is linked to geography and human selection

Roberto Bacilieri; Thierry Lacombe; Loïc Le Cunff; Manuel Di Vecchi-Staraz; V. Laucou; Blaise Genna; Jean-Pierre Péros; Patrice This; Jean-Michel Boursiquot

BackgroundGrapevine (Vitis vinifera subsp. vinifera) is one of the most important and ancient horticultural plants in the world. Domesticated about 8–10,000 years ago in the Eurasian region, grapevine evolved from its wild relative (V. vinifera subsp. sylvestris) into very diverse and heterozygous cultivated forms. In this work we study grapevine genetic structure in a large sample of cultivated varieties, to interpret the wide diversity at morphological and molecular levels and link it to cultivars utilization, putative geographic origin and historical events.ResultsWe analyzed the genetic structure of cultivated grapevine using a dataset of 2,096 multi-locus genotypes defined by 20 microsatellite markers. We used the Bayesian approach implemented in the STRUCTURE program and a hierarchical clustering procedure based on Ward’s method to assign individuals to sub-groups. The analysis revealed three main genetic groups defined by human use and geographic origin: a) wine cultivars from western regions, b) wine cultivars from the Balkans and East Europe, and c) a group mainly composed of table grape cultivars from Eastern Mediterranean, Caucasus, Middle and Far East countries. A second structure level revealed two additional groups, a geographic group from the Iberian Peninsula and Maghreb, and a group comprising table grapes of recent origins from Italy and Central Europe. A large number of admixed genotypes were also identified. Structure clusters regrouped together a large proportion of family-related genotypes. In addition, Ward’s method revealed a third level of structure, corresponding either to limited geographic areas, to particular grape use or to family groups created through artificial selection and breeding.ConclusionsThis study provides evidence that the cultivated compartment of Vitis vinifera L. is genetically structured. Genetic relatedness of cultivars has been shaped mostly by human uses, in combination with a geographical effect. The finding of a large portion of admixed genotypes may be the trace of both large human-mediated exchanges between grape-growing regions throughout history and recent breeding.

Collaboration


Dive into the Patrice This's collaboration.

Top Co-Authors

Avatar

Thierry Lacombe

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Michel Boursiquot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

V. Laucou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Agnès Doligez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Roberto Bacilieri

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Péros

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Dereeper

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge