Patricia A. Nuttall
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia A. Nuttall.
Molecular Cell | 1999
G.C. Paesen; P.L. Adams; Karl Harlos; Patricia A. Nuttall; David I. Stuart
High-affinity histamine-binding proteins (HBPs) were discovered in the saliva of Rhipicephalus appendiculatus ticks. Their ability to outcompete histamine receptors indicates that they suppress inflammation during blood feeding. The crystal structure of a histamine-bound HBP, determined at 1.25 A resolution, reveals a lipocalin fold novel in containing two binding sites for the same ligand. The sites are orthogonally arranged and highly rigid and form an internal surface of unusual polar character that complements the physicochemical properties of histamine. As soluble receptors of histamine, HBPs offer a new strategy for controlling histamine-based diseases.
Parasitology Today | 1996
Sarah E. Randolph; L. Gern; Patricia A. Nuttall
Until recently, the transmission of tick-borne pathogens via vertebrates was thought to depend on the development of a systemic infection in the vertebrate hosts. Pathogen transmission has now been shown to occur between infected and uninfected ticks co-feeding in time or space in the absence of a systemic infection, originally for viruses, but now also for bacteria. The epidemiological consequences of this new non-systemic transmission pathway necessitate a major reassessment of the components and dynamics of tick-borne pathogen enzootic cycles. Here Sarah Randolph, Lise Gern and Pat Nuttall show that a much wider range of natural hosts than was previously recognized may contribute significantly to the transmission of tick-borne diseases, and compare quantitatively the relative contributions made by the systemic and non-systemic transmission pathways.
Parasitology | 2004
Milan Labuda; Patricia A. Nuttall
At least 38 viral species are transmitted by ticks. Virus-tick-vertebrate host relationships are highly specific and less than 10% of all tick species (Argasidae and Ixodidae) are known to play a role as vectors of arboviruses. However, a few tick species transmit several (e.g. Ixodes ricinus, Amblyomma variegatum) or many (I. uriae) tick-borne viruses. Tick-borne viruses are found in six different virus families (Asfarviridae, Reoviridae, Rhabdoviridae, Orthomyxoviridae, Bunyaviridae, Flaviviridae) and at least 9 genera. Some as yet unassigned tick-borne viruses may belong to a seventh family, the Arenaviridae. With only one exception (African swine fever virus, family Asfarviridae) all tick-borne viruses (as well as all other arboviruses) are RNA viruses. Tick-borne viruses are found in all the RNA virus families in which insect-borne members are found, with the exception of the family Togaviridae. Some tick-borne viruses pose a significant threat to the health of humans (Tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus) or livestock (African swine fever virus, Nairobi sheep disease virus). Key challenges are to determine the molecular adaptations that allow tick-borne viruses to infect and replicate in both tick and vertebrate cells, and to identify the principal ecological determinants of tick-borne virus survival.
Parasite Immunology | 2006
Patricia A. Nuttall; Adama R. Trimnell; Mária Kazimírová; Milan Labuda
Tick vaccines derived from Bm86, a midgut membrane‐bound protein of the cattle tick, Boophilus microplus, are currently the only commercially available ectoparasite vaccines. Despite its introduction to the market in 1994, and the recognized need for alternatives to chemical pesticides, progress in developing effective antitick vaccines (and ectoparasite vaccines in general) is slow. The primary rate‐limiting step is the identification of suitable antigenic targets for vaccine development. Two sources of candidate vaccine antigens have been identified: ‘exposed’ antigens that are secreted in tick saliva during attachment and feeding on a host and ‘concealed’ antigens that are normally hidden from the host. Recently, a third group of antigens has been distinguished that combines the properties of both exposed and concealed antigens. This latter group offers the prospect of a broad‐spectrum vaccine effective against both adults and immature stages of a wide variety of tick species. It also shows transmission‐blocking and protective activity against a tick‐borne pathogen. With the proliferation of molecular techniques and their application to vaccine development, there are high hopes for new and effective antitick vaccines that also control tick‐borne diseases.
Journal of Immunology | 2005
Miles A. Nunn; Ankit Sharma; Guido C. Paesen; Sharon Adamson; Olga Lissina; Anthony C. Willis; Patricia A. Nuttall
Blood-feeding ticks must control C activation or be damaged by the host inflammatory response. We report the characterization and expression of a novel, relatively small, broad-acting C inhibitory protein (termed OmCI) from the soft tick Ornithodoros moubata. The native 17-kDa nonglycosylated protein inhibits both human and guinea pig classical and alternative C activation pathways. The IC50 values for each pathway were 12 and 27 nM, respectively, in hemolytic assays using human serum diluted 40-fold. The cDNA encodes a protein of 168 aa, including an 18-aa secretion signal sequence that is absent in the mature form. The inhibitor has 46% amino acid identity with moubatin, a platelet aggregation inhibitor also from O. moubata that is an outlying member of the lipocalin family. Native OmCI had no inhibitory effect on the addition of C8 and C9 to preformed C5b-C7 and C5b-C8 to form the membrane attack complex and no effect on the rate of C3a production by the C3 convertase enzymes C4bC2a, C3(H2O)Bb, or C3bBb. Both recombinant and native OmCI abolish production of C5a by human classical (C4bC3bC2a) and alternative (C3bC3bBb) C5 convertases. Addition of excess C5 but not C3 competes away the inhibitory activity of OmCI, indicating that OmCI targets C5 itself rather than inhibiting the C5 convertase C4bC3bC2a itself. Direct binding of OmCI to C5 was demonstrated by Western blotting and gel filtration chromatography using 125I-labeled proteins. OmCI is the first lipocalin family member shown to inhibit C and also the first natural inhibitor that specifically targets the C5 activation step.
Advances in Virus Research | 2003
Tamara S. Gritsun; Patricia A. Nuttall; Ernest A. Gould
Tick-borne encephalitis (TBE), one of the most dangerous neuroinfections in Europe and Asia, is caused by tick-borne encephalitis virus (TBEV) and currently involves approximately 11,000 human cases annually, mostly in Russia. This chapter describes the main problems associated with the epidemiology, ecology, pathogenesis, and control of this disease. We have attempted to review the factors that influence the incidence and distribution of TBE, and to discuss possible reasons for the different clinical manifestations including most commonly observed asymptomatic infections, fever forms, acute encephalitis, and the less frequently registered biphasic milk fever and chronic encephalitis. Epidemiologic data concerning the other tick-borne flaviviruses, namely Louping ill virus, Langat virus, and Powassan virus that also produce encephalitis on a smaller scale, are also presented. Here we describe the history and current epidemiological role of Omsk hemorrhagic fever virus and Kyasanur forest disease virus, two viruses that are genetically closely related to TBEV, but produce hemorrhagic fever instead of encephalitis, and provide possible explanations for these differences. The other viruses in the tick-borne flavivirus group are also included despite the fact that they do not play an essential epidemiologic role in humans. This chapter contains a brief history of vaccination against TBE including the trials with live attenuated vaccine and reviews the modern trends in development of vaccine virus strains.
Parasitology | 1997
N. H. Ogden; Patricia A. Nuttall; Sarah E. Randolph
We present observational and experimental evidence that cycles of the Lyme disease spirochaete, Borrelia burgdorferi s.l., can be maintained by sheep in the virtual absence of alternative hosts. A 2-year field study in upland moorland habitats of northwest UK established that sheep feed up to 80% of larval, > 99% of nymphal and all of the adult female tick (Ixodes ricinus) population. Infection prevalence of B. burgdorferi in questing ticks reaches over 20%, but amplification of infection occurs principally as nymphs (20- to 30-fold), rather than larvae (4- to 7-fold), feed on sheep, and transmission from sheep to ticks occurred only during peak tick abundance in May and September. Experimental transmission studies confirmed that sheep, previously exposed to infected ticks on the moorland site, do not support systemic infections of B. burgdorferi, but they can transmit localized infections from infected to uninfected ticks co-feeding at the same site on the sheeps body.
Parasitology | 2004
Patricia A. Nuttall; Milan Labuda
The skin site at which ticks attach to their hosts to feed is the critical interface between the tick and its host, and tick-borne pathogens. This site is highly modified by the pharmacologically active molecules secreted in tick saliva. For pathogens, it is an ecologically privileged niche that many exploit. Such exploitation is referred to as saliva-activated transmission (SAT) - the indirect promotion of tick-borne pathogen transmission via the actions of bioactive tick saliva molecules on the vertebrate host. Here we review evidence for SAT and consider what are the most likely candidates for SAT factors among the tick pharmacopoeia of anti-haemostatic, anti-inflammatory and immunomodulatory molecules identified to date. SAT factors appear to differ for different pathogens and tick vector species, and possibly even depend on the vertebrate host species. Most likely we are searching for a suite of molecules that act together to overcome the redundancy in host response mechanisms. Whatever they turn out to be, the quest to identify the tick molecules that mediate SAT is an exciting one, and offers new insights to controlling ticks and tick-borne diseases.
PLOS Pathogens | 2006
Milan Labuda; Adama R. Trimnell; Martina Ličková; Mária Kazimírová; Gillian M. Davies; Olga Lissina; Rosie S. Hails; Patricia A. Nuttall
Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP) of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV) transmitted by infected Ixodes ricinus ticks. The vaccine has a “dual action” in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: “transmission,” number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; “support,” number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and “survival,” number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD) that targets only the ticks midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.
Insect Molecular Biology | 2002
S. Sangamnatdej; Guido C. Paesen; Mirko Slovák; Patricia A. Nuttall
To overcome the inflammatory response in its host, the cattle‐feeding, brown ear tick secretes histamine‐binding proteins into the feeding site. These proteins are β‐barrels with two internal binding sites: a high‐affinity (H) site for histamine and a site (L) for which the natural ligand is unknown. Here we report a related protein (SHBP), secreted by a rodent‐ and cattle‐feeding tick, that traps both histamine and serotonin. The histamine‐binding H site is well conserved in SHBP, whereas residue changes in the L‐like site are consistent with binding of the bulkier serotonin molecule. As histamine is a key inflammatory mediator in cattle, while serotonin takes on this role in rodents, the diversification of these tick proteins may reflect host adaptation.