Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Albanese is active.

Publication


Featured researches published by Patricia Albanese.


PLOS ONE | 2008

Suppression of Tumor Growth and Angiogenesis by a Specific Antagonist of the Cell-Surface Expressed Nucleolin

Damien Destouches; Diala El Khoury; Yamina Hamma-Kourbali; Bernard Krust; Patricia Albanese; Panagiotis Katsoris; Gilles Guichard; Jean Paul Briand; José Courty; Ara G. Hovanessian

Background Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Methodology/Principal Findings By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. Conclusion/Significance Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.


Materials Science and Engineering: C | 2014

Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.

Julien Ramier; Thibault Bouderlique; Olya Stoilova; Nevena Manolova; Iliya Rashkov; Valérie Langlois; Estelle Renard; Patricia Albanese; Daniel Grande

The electrospinning technique combined with the electrospraying process provides a straightforward and versatile approach for the fabrication of novel nanofibrous biocomposite scaffolds with structural, mechanical, and biological properties potentially suitable for bone tissue regeneration. In this comparative investigation, three types of poly(3-hydroxybutyrate) (PHB)-based scaffolds were engineered: (i) PHB mats by electrospinning of a PHB solution, (ii) mats of PHB/hydroxyapatite nanoparticle (nHA) blends by electrospinning of a mixed solution containing PHB and nHAs, and (iii) mats constituted of PHB nanofibers and nHAs by simultaneous electrospinning of a PHB solution and electrospraying of a nHA dispersion. Scaffolds based on PHB/nHA blends displayed improved mechanical properties compared to those of neat PHB mats, due to the incorporation of nHAs within the fibers. The electrospinning/electrospraying approach afforded biocomposite scaffolds with lower mechanical properties, due to their higher porosity, but they displayed slightly better biological properties. In the latter case, the bioceramic, i.e. nHAs, largely covered the fiber surface, thus allowing for a direct exposure to cells. The 21 day-monitoring through the use of MTS assays and SEM analyses demonstrated that human mesenchymal stromal cells (hMSCs) remained viable on PHB/nHA biocomposite scaffolds and proliferated continuously until reaching confluence.


Cancer Research | 2011

A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins.

Damien Destouches; Nicolas Page; Yamina Hamma-Kourbali; Valerie Machi; Olivier Chaloin; Sophie Frechault; Charalampos Birmpas; Panagiotis Katsoris; Julien Beyrath; Patricia Albanese; Marie Maurer; Gilles Carpentier; Jean Marc Strub; Alain Van Dorsselaer; Sylvianne Muller; Dominique Bagnard; Jean-Paul Briand; José Courty

Recent studies have implicated the involvement of cell surface forms of nucleolin in tumor growth. In this study, we investigated whether a synthetic ligand of cell-surface nucleolin known as N6L could exert antitumor activity. We found that N6L inhibits the anchorage-dependent and independent growth of tumor cell lines and that it also hampers angiogenesis. Additionally, we found that N6L is a proapoptotic molecule that increases Annexin V staining and caspase-3/7 activity in vitro and DNA fragmentation in vivo. Through affinity isolation experiments and mass-spectrometry analysis, we also identified nucleophosmin as a new N6L target. Notably, in mouse xenograft models, N6L administration inhibited human tumor growth. Biodistribution studies carried out in tumor-bearing mice indicated that following administration N6L rapidly localizes to tumor tissue, consistent with its observed antitumor effects. Our findings define N6L as a novel anticancer drug candidate warranting further investigation.


Stem Cell Research | 2012

Glycosaminoglycans mimetics potentiate the clonogenicity, proliferation, migration and differentiation properties of rat mesenchymal stem cells

Guilhem Frescaline; Thibault Bouderlique; Minh Bao Huynh; Dulce Papy-Garcia; José Courty; Patricia Albanese

Successful use of stem cell-based therapeutic products is conditioned by transplantation of optimized cells in permissive microenvironment. Mesenchymal stem cell (MSC) fates are tightly regulated by humoral factors, cellular interactions and extracellular matrix (ECM) components, such as glycosaminoglycans (GAG), which are complex polysaccharides with structural heterogeneity. During osteogenesis, a temporally controlled expression of particular GAG species is required to interact with specific growth promoting and differentiating factors to regulate their biological activities. As a comparative tool to study natural GAG, we used structurally and functionally related synthetic GAG mimetics. One of these compounds [OTR(4120)] was previously shown to stimulate bone repair in rat models. Here, we demonstrate that structurally distinct GAG mimetics stimulate differentially clonogenicity, proliferation, migration and osteogenic phenotype of MSC in vitro, according to their specific chemical signature, underlying the role of sulfate and acetyl groups in specific interactions with heparin binding factors (HBF). These effects are dependent on FGF-2 interactions since they are inhibited by a FGF receptor 1 signaling pathway blocker. These data suggest that the in vivo [OTR(4120)] bone regenerative effect could be due to its ability to induce MSC migration and osteogenic differentiation. To conclude, we provide evidences showing that GAG mimetics may have great interest for bone regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of MSC.


Journal of Biological Chemistry | 2012

Age-related Changes in Rat Myocardium Involve Altered Capacities of Glycosaminoglycans to Potentiate Growth Factor Functions and Heparan Sulfate-altered Sulfation

Minh Bao Huynh; Christophe Morin; Gilles Carpentier; Stephanie Garcia-Filipe; Sofia Talhas-Perret; Véronique Barbier-Chassefiere; Toin H. van Kuppevelt; Isabelle Martelly; Patricia Albanese; Dulce Papy-Garcia

Background: Heparan sulfates (HS) are important cell behavior regulators. Results: With age, HS structural changes affect myocardial growth factor functionalities. Conclusion: This reveals the importance of HS on the control of essential tissue repair effectors during aging. Significance: Changes in cardiac HS may alter tissue homeostasis and impair heart function. This might also limit the success of protein therapies and implantation of therapeutic cells. Glycosaminoglycans (GAGs) are essential components of the extracellular matrix, the natural environment from which cell behavior is regulated by a number or tissue homeostasis guarantors including growth factors. Because most heparin-binding growth factor activities are regulated by GAGs, structural and functional alterations of these polysaccharides may consequently affect the integrity of tissues during critical physiological and pathological processes. Here, we investigated whether the aging process can induce changes in the myocardial GAG composition in rats and whether these changes can affect the activities of particular heparin-binding growth factors known to sustain cardiac tissue integrity. Our results showed an age-dependent increase of GAG levels in the left ventricle. Biochemical and immunohistological studies pointed out heparan sulfates (HS) as the GAG species that increased with age. ELISA-based competition assays showed altered capacities of the aged myocardial GAGs to bind FGF-1, FGF-2, and VEGF but not HB EGF. Mitogenic assays in cultured cells showed an age-dependent decrease of the elderly GAG capacities to potentiate FGF-2 whereas the potentiating effect on VEGF165 was increased, as confirmed by augmented angiogenic cell proliferation in Matrigel plugs. Moreover, HS disaccharide analysis showed considerably altered 6-O-sulfation with modest changes in N- and 2-O-sulfations. Together, these findings suggest a physiological significance of HS structural and functional alterations during aging. This can be associated with an age-dependent decline of the extracellular matrix capacity to efficiently modulate not only the activity of resident or therapeutic growth factors but also the homing of resident or therapeutic cells.


Experimental Hematology | 2009

Glycosaminoglycan mimetics-induced mobilization of hematopoietic progenitors and stem cells into mouse peripheral blood: structure/function insights.

Patricia Albanese; Danielle Caruelle; Guilhem Frescaline; Jean Delbé; Laurence Petit-Cocault; Eric Huet; Nathalie Charnaux; Georges Uzan; Dulce Papy-Garcia; José Courty

OBJECTIVE Glycosaminoglycans (GAG) are major components of bone marrow extracellular matrix because they have the property to interact with cells and growth factors in hematopoietic niches. In this study, we investigated the effect of two different chemically defined GAG mimetics on mobilization of hematopoietic stem and progenitor cells (HSPCs) in mice peripheral blood. MATERIALS AND METHODS Mobilization was achieved by intraperitoneal injection of GAG mimetics. Mobilized cells were characterized phenotypically by reverse transcription polymerase chain reaction and fluorescence-activated cell sorting analysis and functionally by colony-forming cell, cobblestone area-forming cell and long-term culture-initiating cell assays in vitro. Radioprotection assays were performed to confirm the functionality of primitive hematopoietic cells in vivo. Involvement of stromal-derived factor-1 (SDF-1) and matrix metalloproteinase-9 (MMP-9) were investigated. RESULTS GAG mimetics treatment induces hyperleukocytosis and mobilization of HSPC. They synergize with the effects of granulocyte colony-stimulating factor or AMD3100 on hematopoietic progenitors mobilization. Reconstitution of lethally irradiated recipient mice with peripheral blood mononuclear cells from GAG mimetic-treated donor mice improves engraftment and survival. BiAcore studies indicate that the mimetics interact directly with SDF-1. In addition, GAG mimetics-induced mobilization is associated with increased levels of pro- and active MMP-9 from bone marrow cells and increased level of SDF-1 in peripheral blood. Finally, mobilization is partially inhibited by co-injection with anti-SDF-1 antibody. CONCLUSION This study demonstrates that GAG mimetics induce efficient mobilization of HSPCs, associated with an activation of pro-MMP-9 and a modification in the SDF-1 concentration gradient between bone marrow and peripheral blood. We suggest that structural features of GAGs can modify the nature of mobilized cells.


Cancer Research | 2015

Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis

Christophe Martinaud; Christophe Desterke; Johanna Konopacki; Lisa Pieri; Frédéric Torossian; Rachel Golub; Sandrine Schmutz; Adrienne Anginot; Bernadette Guerton; Nathalie Rochet; Patricia Albanese; Emilie Henault; Olivier Pierre-Louis; Jean-Baptiste Souraud; Thierry de Revel; Brigitte Dupriez; Jean-Christophe Ianotto; Marie-Françoise Bourgeade; Alessandro M. Vannucchi; Jean-Jacques Lataillade; Marie-Caroline Le Bousse-Kerdilès

Primary myelofibrosis is a myeloproliferative neoplasm that is a precursor to myeloid leukemia. Dysmegakaryopoiesis and extramedullary hematopoiesis characterize primary myelofibrosis, which is also associated with bone marrow stromal alterations marked by fibrosis, neoangiogenesis, and osteomyelosclerosis. In particular, contributions to primary myelofibrosis from mesenchymal stromal cells (MSC) have been suggested by mouse studies, but evidence in humans remains lacking. In this study, we show that bone marrow MSCs from primary myelofibrosis patients exhibit unique molecular and functional abnormalities distinct from other myeloproliferative neoplasms and these abnormalities are maintained stably ex vivo in the absence of leukemic cells. Primary myelofibrosis-MSC overexpressed heparin-binding cytokines, including proinflammatory TGFβ1 and osteogenic BMP-2, as well as glycosaminoglycans such as heparan sulfate and chondroitin sulfate. Transcriptome and functional analyses revealed alterations in MSC differentiation characterized by an increased osteogenic potential and a TGFβ1 signaling signature. Accordingly, phospho-Smad2 levels were intrinsically increased in primary myelofibrosis-MSC along with enhanced expression of the master bone regulator RUNX2, while inhibition of the endogenous TGFβ1 receptor TGFβR1 impaired osteogenic differentiation in these MSCs. Taken together, our results define the source of a critical osteogenic function in primary myelofibrosis that supports its pathophysiology, suggesting that combined targeting of both the hematopoietic and stromal cell compartments in primary myelofibrosis patients may heighten therapeutic efficacy.


Stem Cell Research | 2014

Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies.

Fabien Chevalier; Mélanie Lavergne; Elisa Negroni; Ségolène Ferratge; Gilles Carpentier; Marie Gilbert-Sirieix; Fernando Siñeriz; Georges Uzan; Patricia Albanese

Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.


PLOS ONE | 2014

Pleiotrophin Commits Human Bone Marrow Mesenchymal Stromal Cells towards Hypertrophy during Chondrogenesis

Thibault Bouderlique; Emilie Henault; Angélique Lebouvier; Guilhem Frescaline; Phillipe Bierling; Hélène Rouard; José Courty; Patricia Albanese; Nathalie Chevallier

Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.


International Journal of Cancer | 2009

Antitumorigenic effects of a mutant of the heparin affin regulatory peptide on the U87 MG glioblastoma cell line

Célia Dos Santos; Racha Karaky; Dominique Renoir; Yamina Hamma-Kourbali; Patricia Albanese; Emilie Gobbo; Frank Griscelli; Paule Opolon; Sophie Dalle; Michel Perricaudet; José Courty; Jean Delbé

Glioblastoma is the most common primary brain tumor in human adults. Since existing treatments are not effective enough, novel therapeutic targets must be sought. The heparin‐binding growth factor, heparin affin regulatory peptide (HARP), also known as pleiotrophin (PTN), could potentially represent such a target. We have previously shown that a mutant protein, HARPΔ111–136, which lacks HARPs C‐terminal 26 amino acids, acts as a dominant negative HARP effector by heterodimerizing with the wild‐type growth factor. The aim of our study was to evaluate the potential inhibitory activity of HARPΔ111–136 on the U87 MG human glioblastoma cell line. By overexpressing the truncated form of HARP in stably established clones of U87 MG cells, we observed an inhibition of proliferation under both anchorage‐dependent and anchorage‐independent conditions. We confirmed these results in an in vivo subcutaneous tumor xenograft model. In addition, we found that HARPΔ111–136 inhibited cell proliferation in a paracrine manner. Analysis of key cellular pathways revealed a decrease of cell adhesion in U87 MG cells that overexpressed the mutant protein, which could explain this inhibitory effect. A replication‐defective adenovirus model that encoded HARPΔ111–136 supported a putative antiproliferative role for the truncated protein in vitro and in vivo. Interestingly, HARPΔ111–136 was also able to abolish angiogenic activity in HUVEC proliferation and in a Matrigel plug assay. These results demonstrate that considering its antiproliferative and angiostatic effects, HARPΔ111–136 could be of great interest when used in conjunction with standard treatments.

Collaboration


Dive into the Patricia Albanese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilie Henault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guilhem Frescaline

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge