Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Bassereau is active.

Publication


Featured researches published by Patricia Bassereau.


Nature | 2007

Shiga toxin induces tubular membrane invaginations for its uptake into cells

Winfried Römer; Ludwig Berland; Valérie Chambon; Katharina Gaus; Danièle Tenza; Mohamed R. E. Aly; Vincent Fraisier; Jean-Claude Florent; David Perrais; Christophe Lamaze; Graça Raposo; Claudia Steinem; Pierre Sens; Patricia Bassereau; Ludger Johannes

Clathrin seems to be dispensable for some endocytic processes and, in several instances, no cytosolic coat protein complexes could be detected at sites of membrane invagination. Hence, new principles must in these cases be invoked to account for the mechanical force driving membrane shape changes. Here we show that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes. In cells, tubule occurrence increases on energy depletion and inhibition of dynamin or actin functions. Our data thus demonstrate that active cellular processes are needed for tubule scission rather than tubule formation. We conclude that the B-subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules. Our findings support a model in which the lateral growth of B-subunit–Gb3 microdomains is limited by the invagination process, which itself is regulated by membrane tension. The physical principles underlying this basic cargo-induced membrane uptake may also be relevant to other internalization processes, creating a rationale for conceptualizing the perplexing diversity of endocytic routes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins

Benoit Sorre; Andrew Callan-Jones; Jean-Baptiste Manneville; Pierre Nassoy; Jean-François Joanny; Jacques Prost; Bruno Goud; Patricia Bassereau

Sorting of lipids and proteins is a key process allowing eukaryotic cells to execute efficient and accurate intracellular transport and to maintain membrane homeostasis. It occurs during the formation of highly curved transport intermediates that shuttle between cell compartments. Protein sorting is reasonably well described, but lipid sorting is much less understood. Lipid sorting has been proposed to be mediated by a physical mechanism based on the coupling between membrane composition and high curvature of the transport intermediates. To test this hypothesis, we have performed a combination of fluorescence and force measurements on membrane tubes of controlled diameters pulled from giant unilamellar vesicles. A model based on membrane elasticity and nonideal solution theory has also been developed to explain our results. We quantitatively show, using 2 independent approaches, that a difference in lipid composition can build up between a curved and a noncurved membrane. Importantly, and consistent with our theory, lipid sorting occurs only if the system is close to a demixing point. Remarkably, this process is amplified when even a low fraction of lipids is clustered upon cholera toxin binding. This can be explained by the reduction of the entropic penalty of lipid sorting when some lipids are bound together by the toxin. Our results show that curvature-induced lipid sorting results from the collective behavior of lipids and is even amplified in the presence of lipid-clustering proteins. In addition, they suggest a generic mechanism by which proteins can facilitate lipid segregation in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A minimal system allowing tubulation with molecular motors pulling on giant liposomes

Aurélien Roux; Giovanni Cappello; Jean Cartaud; Jacques Prost; Bruno Goud; Patricia Bassereau

The elucidation of physical and molecular mechanisms by which a membrane tube is generated from a membrane reservoir is central to the understanding of the structure and dynamics of intracellular organelles and of transport intermediates in eukaryotic cells. Compelling evidence exists that molecular motors of the dynein and kinesin families are involved in the tubulation of organelles. Here, we show that lipid giant unilamellar vesicles (GUVs), to which kinesin molecules have been attached by means of small polystyrene beads, give rise to membrane tubes and to complex tubular networks when incubated in vitro with microtubules and ATP. Similar tubes and networks are obtained with GUVs made of purified Golgi lipids, as well as with Golgi membranes. No tube formation was observed when kinesins were directly bound to the GUV membrane, suggesting that it is critical to distribute the load on both lipids and motors by means of beads. A kinetic analysis shows that network growth occurs in two phases: a phase in which membrane-bound beads move at the same velocity than free beads, followed by a phase in which the tube growth rate decreases and strongly fluctuates. Our work demonstrates that the action of motors bound to a lipid bilayer is sufficient to generate membrane tubes and opens the way to well controlled experiments aimed at the understanding of basic mechanisms in intracellular transport.


Cell | 2010

Actin Dynamics Drive Membrane Reorganization and Scission in Clathrin-Independent Endocytosis

Winfried Römer; Lea-Laetitia Pontani; Benoı̂t Sorre; Carles Rentero; Ludwig Berland; Valérie Chambon; Christophe Lamaze; Patricia Bassereau; Cécile Sykes; Katharina Gaus; Ludger Johannes

Nascent transport intermediates detach from donor membranes by scission. This process can take place in the absence of dynamin, notably in clathrin-independent endocytosis, by mechanisms that are yet poorly defined. We show here that in cells scission of Shiga toxin-induced tubular endocytic membrane invaginations is preceded by cholesterol-dependent membrane reorganization and correlates with the formation of membrane domains on model membranes, suggesting that domain boundary forces are driving tubule membrane constriction. Actin triggers scission by inducing such membrane reorganization process. Tubule occurrence is indeed increased upon cellular depletion of the actin nucleator component Arp2, and the formation of a cortical actin shell in liposomes is sufficient to trigger the scission of Shiga toxin-induced tubules in a cholesterol-dependent but dynamin-independent manner. Our study suggests that membranes in tubular Shiga toxin-induced invaginations are poised to undergo actin-triggered reorganization leading to scission by a physical mechanism that may function independently from or in synergy with pinchase activity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Membrane curvature controls dynamin polymerization

Aurélien Roux; Gerbrand Koster; Martin Lenz; Benoit Sorre; Jean-Baptiste Manneville; Pierre Nassoy; Patricia Bassereau

The generation of membrane curvature in intracellular traffic involves many proteins that can curve lipid bilayers. Among these, dynamin-like proteins were shown to deform membranes into tubules, and thus far are the only proteins known to mechanically drive membrane fission. Because dynamin forms a helical coat circling a membrane tubule, its polymerization is thought to be responsible for this membrane deformation. Here we show that the force generated by dynamin polymerization, 18 pN, is sufficient to deform membranes yet can still be counteracted by high membrane tension. Importantly, we observe that at low dynamin concentration, polymer nucleation strongly depends on membrane curvature. This suggests that dynamin may be precisely recruited to membrane buds’ necks because of their high curvature. To understand this curvature dependence, we developed a theory based on the competition between dynamin polymerization and membrane mechanical deformation. This curvature control of dynamin polymerization is predicted for a specific range of concentrations (∼0.1–10 μM), which corresponds to our measurements. More generally, we expect that any protein that binds or self-assembles onto membranes in a curvature-coupled way should behave in a qualitatively similar manner, but with its own specific range of concentration.


Nature | 2015

ENDOPHILIN-A2 FUNCTIONS IN MEMBRANE SCISSION IN CLATHRIN-INDEPENDENT ENDOCYTOSIS

Henri-François Renard; Mijo Simunovic; Joël Lemière; Emmanuel Boucrot; Maria Daniela Garcia-Castillo; Senthil Arumugam; Valérie Chambon; Christophe Lamaze; Christian Wunder; Anne K. Kenworthy; Anne A. Schmidt; Harvey T. McMahon; Cécile Sykes; Patricia Bassereau; Ludger Johannes

During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nature of curvature coupling of amphiphysin with membranes depends on its bound density

Benoit Sorre; Andrew Callan-Jones; John Manzi; Bruno Goud; Jacques Prost; Patricia Bassereau; Aurélien Roux

Cells are populated by a vast array of membrane-binding proteins that execute critical functions. Functions, like signaling and intracellular transport, require the abilities to bind to highly curved membranes and to trigger membrane deformation. Among these proteins is amphiphysin 1, implicated in clathrin-mediated endocytosis. It contains a Bin-Amphiphysin-Rvs membrane-binding domain with an N-terminal amphipathic helix that senses and generates membrane curvature. However, an understanding of the parameters distinguishing these two functions is missing. By pulling a highly curved nanotube of controlled radius from a giant vesicle in a solution containing amphiphysin, we observed that the action of the protein depends directly on its density on the membrane. At low densities of protein on the nearly flat vesicle, the distribution of proteins and the mechanical effects induced are described by a model based on spontaneous curvature induction. The tube radius and force are modified by protein binding but still depend on membrane tension. In the dilute limit, when practically no proteins were present on the vesicle, no mechanical effects were detected, but strong protein enrichment proportional to curvature was seen on the tube. At high densities, the radius is independent of tension and vesicle protein density, resulting from the formation of a scaffold around the tube. As a consequence, the scaling of the force with tension is modified. For the entire density range, protein was enriched on the tube as compared to the vesicle. Our approach shows that the strength of curvature sensing and mechanical effects on the tube depends on the protein density.


Current Opinion in Cell Biology | 2008

Biophysical approaches to protein-induced membrane deformations in trafficking

Pierre Sens; Ludger Johannes; Patricia Bassereau

Membrane traffic requires membrane deformation to generate vesicles and tubules. Strong evidence suggests that assembly of curvature-active proteins can drive such membrane shape changes. Well-documented pathways often involve protein scaffolds, in particular coats (clathrin or COP). However, membrane curvature should, in principle, be influenced by any protein binding asymmetrically on a membrane; large membrane morphological changes could result from their aggregation. In the case of Shiga toxin or viral matrix proteins, tubules and buds appear to result from the cargo-driven formation of protein-lipid nanodomains, showing that collective protein behaviour is crucial in the process. We argue here that a combination of in vitro experiments on giant unilamellar vesicles and theoretical modelling based on statistical physics is ideally suited to tackle these collective effects.


Proceedings of the National Academy of Sciences of the United States of America | 2008

COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension

Jean-Baptiste Manneville; Jean-François Casella; Ernesto E. Ambroggio; Pierre Gounon; Julien Bertherat; Patricia Bassereau; Jean Cartaud; Bruno Antonny; Bruno Goud

Cytoplasmic coat proteins are required for cargo selection and budding of tubulovesicular transport intermediates that shuttle between intracellular compartments. To better understand the physical parameters governing coat assembly and coat-induced membrane deformation, we have reconstituted the Arf1-dependent assembly of the COPI coat on giant unilamellar vesicles by using fluorescently labeled Arf1 and coatomer. Membrane recruitment of Arf1-GTP occurs exclusively on disordered lipid domains and does not induce optically visible membrane deformation. In the presence of Arf1-GTP, coatomer self-assembles into weakly curved coats on membranes under high tension, while it induces extensive membrane deformation at low membrane tension. These deformations appear to have a composition different from the parental membrane because they are protected from phase transition. These findings suggest that the COPI coat is adapted to liquid disordered membrane domains where it could promote lipid sorting and that its mechanical effects can be tuned by membrane tension.


Nature Reviews Molecular Cell Biology | 2015

Building endocytic pits without clathrin

Ludger Johannes; Robert G. Parton; Patricia Bassereau; Satyajit Mayor

How endocytic pits are built in clathrin- and caveolin-independent endocytosis still remains poorly understood. Recent insight suggests that different forms of clathrin-independent endocytosis might involve the actin-driven focusing of membrane constituents, the lectin–glycosphingolipid-dependent construction of endocytic nanoenvironments, and Bin–Amphiphysin–Rvs (BAR) domain proteins serving as scaffolding modules. We discuss the need for different types of internalization processes in the context of diverse cellular functions, the existence of clathrin-independent mechanisms of cargo recruitment and membrane bending from a biological and physical perspective, and finally propose a generic scheme for the formation of clathrin-independent endocytic pits.

Collaboration


Dive into the Patricia Bassereau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Nassoy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge