Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia C. M. O’Brien is active.

Publication


Featured researches published by Patricia C. M. O’Brien.


Cytogenetic and Genome Research | 1999

Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats

Roscoe Stanyon; Fengtang Yang; P. Cavagna; Patricia C. M. O’Brien; M. Bagga; M. A. Ferguson-Smith; J. Wienberg

Reciprocal chromosome painting between mouse and rat using complete chromosome probe sets of both species permitted us to assign the chromosomal homology between these rodents. The comparative gene mapping data and chromosome painting have a better than 90% correspondence. The reciprocal painting results graphically show that mouse and rat have strikingly different karyotypes. At least 14 translocations have occurred in the 10–20 million years of evolution that separates these two species. The evolutionary rate of chromosome translocations between these two rodents appears to be up to 10 times greater than that found between humans and cats, or between humans and chimpanzees, where over the last 5–6 million years just one translocation has occurred. Outgroup comparison shows that the mouse genome has incorporated at least three times the amount of interchromosomal rearrangements compared to the rat genome. The utility of chromosome painting was also illustrated by the assignment of two new chromosome homologies between rat and mouse unsuspected by gene mapping: between mouse 11 and rat 20 and between mouse 17 and rat 6. We conclude that reciprocal chromosome painting is a powerful method, which can be used with confidence to chart the genome and predict the chromosome location of genes. Reciprocal painting combined with gene mapping data will allow the construction of large-scale comparative chromosome maps between placental mammals and perhaps other animals.


Chromosoma | 2011

Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence

Martina Pokorná; M. Giovannotti; Lukáš Kratochvíl; Fumio Kasai; Vladimir A. Trifonov; Patricia C. M. O’Brien; Vincenzo Caputo; Ettore Olmo; Malcolm A. Ferguson-Smith; Willem Rens

The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.


Cytogenetic and Genome Research | 1997

Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis)

S. Müller; Patricia C. M. O’Brien; M. A. Ferguson-Smith; Johannes Wienberg

We used fluorescence in situ hybridisation to delineate the homology between the human karyotype and those of two lemur species (Eulemur macaco macaco and E. fulvus mayottensis). Human and lemur chromosome-specific probes were established by bivariate fluorescence-activated flow sorting (FACS) and subsequent degenerate oligonucleotide-primed PCR (DOP-PCR). Reciprocal painting of human probes to lemur chromosomes and vice versa allowed a detailed analysis of the interchromosomal rearrangements that had occurred during the evolution of these species. The results indicate that the genomes of both species have undergone only a few translocations during more that 45 million years of lemur and human evolution. The synteny of homologs to human chromosomes 3, 9, 11, 13, 14, 17, 18, 20, 21, X, and Y was found to be conserved in the two lemur species. Taking non-primate mammals as the outgroup for primates, ancestral conditions for various primate chromosomes were identified and distinguished from derived forms. Lemur chromosome painting probes were also used for cross-species hybridization between the two lemur species. The results support an earlier assumption, made on the basis of chromosome banding, that the karyotypes of the two species have evolved exclusively by Robertsonian transformations. All probes derived from E. f. mayottensis chromosomes specific for homologs involved in rearrangements in E. m. macaco exclusively painted entire chromosome arms. The results further indicate that E. f. mayottensis most probably has a more ancestral karyotype than E. m. macaco. Probes derived from prosimians will be useful in comparing the karyotypes of other lower primates, which will improve our understanding of early primate genome evolution.


Chromosome Research | 2008

Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla

Vladimir A. Trifonov; Roscoe Stanyon; Anastasia I. Nesterenko; Beiyuan Fu; Polina L. Perelman; Patricia C. M. O’Brien; Gary Stone; Nadezhda V. Rubtsova; Marlys L. Houck; Terence J. Robinson; Malcolm A. Ferguson-Smith; Gauthier Dobigny; Alexander S. Graphodatsky; Fengtang Yang

The order Perissodactyla, the group of odd-toed ungulates, includes three extant families: Equidae, Tapiridae, and Rhinocerotidae. The extremely rapid karyotypic diversification in perissodactyls has so far prevented the establishment of genome-wide homology maps between these three families by traditional cytogenetic approaches. Here we report the first genome-wide comparative chromosome maps of African rhinoceroses, four tapir species, four equine species, and humans. These maps were established by multidirectional chromosome painting, with paint probes derived from flow-sorted chromosomes of Equus grevyi, Tapirus indicus, and Ceratotherium simum as well as painting probes from horse and human. The Malayan tapir (Tapirus indicus), Baird’s tapir (T. bairdii), mountain tapir (T. pinchaque), lowland tapir (T. terrestris), and onager (E. hemionus onager), were studied by cross-species chromosome painting for the first time. Our results, when integrated with previously published comparative chromosome maps of the other perissodactyl species, have enabled the reconstruction of perissodactyl, ceratomorph, and equid ancestral karyotypes, and the identification of the defining evolutionary chromosomal rearrangements along each lineage. Our results allow a more reliable estimate of the mode and tempo of evolutionary chromosomal rearrangements, revealing a striking switch between the slowly evolving ceratomorphs and extremely rapidly evolving equids.


Chromosome Research | 2007

Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype

Gabriel Balmus; Vladimir A. Trifonov; Larisa S. Biltueva; Patricia C. M. O’Brien; Elena S. Alkalaeva; Beiyuan Fu; Julian A. Skidmore; Twink Allen; Alexander S. Graphodatsky; Fengtang Yang; Malcolm A. Ferguson-Smith

The great karyotypic differences between camel, cattle and pig, three important domestic animals, have been a challenge for comparative cytogenetic studies based on conventional cytogenetic approaches. To construct a genome-wide comparative chromosome map among these artiodactyls, we made a set of chromosome painting probes from the dromedary camel (Camelus dromedarius) by flow sorting and degenerate oligonucleotide primed-PCR. The painting probes were first used to characterize the karyotypes of the dromedary camel (C. dromedarius), the Bactrian camel (C. bactrianus), the guanaco (Lama guanicoe), the alpaca (L. pacos) and dromedary × guanaco hybrid karyotypes (all with 2n = 74). These FISH experiments enabled the establishment of a high-resolution GTG-banded karyotype, together with chromosome nomenclature and idiogram for C. dromedarius, and revealed that these camelid species have almost identical karyotypes, with only slight variations in the amount and distribution patterns of heterochromatin. Further cross-species chromosome painting between camel, cattle, pig and human with painting probes from the camel and human led to the establishment of genome-wide comparative maps. Between human and camel, pig and camel, and cattle and camel 47, 53 and 53 autosomal conserved segments were detected, respectively. Integrated analysis with previously published comparative maps of human/pig/cattle enabled us to propose a Cetartiodactyla ancestral karyotype and to discuss the early karyotype evolution of Cetartiodactyla. Furthermore, these maps will facilitate the positional cloning of genes by aiding the cross-species transfer of mapping information.


Chromosome Research | 2007

Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison

Svetlana A. Romanenko; V. Volobouev; Polina L. Perelman; Vladimir S. Lebedev; Natalya A. Serdukova; Vladimir A. Trifonov; Larisa S. Biltueva; Wenhui Nie; Patricia C. M. O’Brien; Nina Sh. Bulatova; Malcolm A. Ferguson-Smith; Fengtang Yang; Alexander S. Graphodatsky

The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.


Mammalian Genome | 1997

Comparative chromosome painting between two marsupials : origins of an XX/XY1Y2 sex chromosome system

Roland Toder; Rachel J. W. O’Neill; Johannes Wienberg; Patricia C. M. O’Brien; Lucille Voullaire; Jennifer A. Marshall-Graves

Cross-species chromosome painting was used to investigate genome rearrangements between tammar wallaby Macropus eugenii (2n = 16) and the swamp wallaby Wallabia bicolor (2n = 10♀/11♂), which diverged about 6 million years ago. The swamp wallaby has an XX female:XY1Y2 male sex chromosome system thought to have resulted from a fusion between an autosome and the small original X, not involving the Y. Thus, the small Y1 should represent the original Y and the large Y2 the original autosome. DNA paints were prepared from flow-sorted and micro-dissected chromosomes from the tammar wallaby. Painting swamp wallaby spreads with each tammar chromosome-specific probe gave extremely strong and clear signals in single-, two-, and three-color FISH. These showed that two tammar wallaby autosomes are represented unchanged in the swamp wallaby, two are represented by different centric fusions, and one by a tandem fusion to make the very long arms of swamp wallaby Chromosome (Chr) 1. The large swamp wallaby X comprises the tammar X as its short arm, and a tandemly fused 7 and 2 as the long arm. The acrocentric swamp wallaby Y2 is a 2/7 fusion, homologous with the long arm of the X. The small swamp wallaby Y1 is confirmed as the original Y by its painting with the tammar Y. However, the presence of sequences shared between the microdissected tammar Xp and Y on the swamp wallaby Y2 implies that the formation of the compound sex chromosomes involved addition of autosome(s) to both the original X and Y. We propose that this involved fusion with an ancient pseudoautosomal region followed by fission proximal to this shared region.


Chromosome Research | 2007

Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting

Natalia A. Sitnikova; Svetlana A. Romanenko; Patricia C. M. O’Brien; Polina L. Perelman; Beiyuan Fu; Nadezhda V. Rubtsova; Natalya A. Serdukova; Golenishchev Fn; Vladimir A. Trifonov; Malcolm A. Ferguson-Smith; Fengtang Yang; Alexander S. Graphodatsky

Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.


Chromosome Research | 2009

Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)-An atypical species with low diploid number

Wenhui Nie; Patricia C. M. O’Brien; Bee Ling Ng; Beiyuan Fu; V. Volobouev; Nigel P. Carter; Malcolm A. Ferguson-Smith; Fengtang Yang

The chicken is the most extensively studied species in birds and thus constitutes an ideal reference for comparative genomics in birds. Comparative cytogenetic studies indicate that the chicken has retained many chromosome characters of the ancestral avian karyotype. The homology between chicken macrochromosomes (1–9 and Z) and their counterparts in more than 40 avian species of 10 different orders has been established by chromosome painting. However, the avian homologues of chicken microchromosomes remain to be defined. Moreover, no reciprocal chromosome painting in birds has been performed due to the lack of chromosome-specific probes from other avian species. Here we have generated a set of chromosome-specific paints using flow cytometry that cover the whole genome of the stone curlew (Burhinus oedicnemus, Charadriiformes), a species with one of the lowest diploid number so far reported in birds, as well as paints from more microchromosomes of the chicken. A genome-wide comparative map between the chicken and the stone curlew has been constructed for the first time based on reciprocal chromosome painting. The results indicate that extensive chromosome fusions underlie the sharp decrease in the diploid number in the stone curlew. To a lesser extent, chromosome fissions and inversions occurred also during the evolution of the stone curlew. It is anticipated that this complete set of chromosome painting probes from the first Neoaves species will become an invaluable tool for avian comparative cytogenetics.


Chromosome Research | 2005

Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera)

Julio Cesar Pieczarka; Cleusa Yoshiko Nagamachi; Patricia C. M. O’Brien; Fengtang Yang; Willem Rens; R. M. S. Barros; R. C. R. Noronha; Jorge Dores Rissino; E.H.C. de Oliveira; M. A. Ferguson-Smith

The Neotropical Phyllostomidae family is the third largest in the order Chiroptera, with 56 genera and 140 species. Most researchers accept this family as monophyletic but its species are anatomically diverse and complex, leading to disagreement on its systematics and evolutionary relationships. Most of the genera of Phyllostomidae have highly conserved karyotypes but with intense intergeneric variability, which makes any comparative analysis using classical banding difficult. The use of chromosome painting is a modern way of genomic comparison on the cytological level, and will clarify the intense intergenus chromosomal variability in Phyllostomidae. Whole chromosome probes of species were produced as a tool for evolutionary studies in this family from two species from different subfamilies, Phyllostomus hastatus and Carollia brevicauda, which have large morphological and chromosomal differences, and these probes were used in reciprocal chromosome painting. The hybridization of the Phyllostomus probes on the Carollia genome revealed 24 conserved segments, while the Carollia probes on the Phyllostomus genome detected 26 segments. Many chromosome rearrangements have occurred during the divergence of these two genera. The sequence of events suggested a large number of rearrangements during the differentiation of the genera followed by high chromosomal stability within each genus.

Collaboration


Dive into the Patricia C. M. O’Brien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengtang Yang

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Vladimir A. Trifonov

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem Rens

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beiyuan Fu

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge