Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia E. Carrigan is active.

Publication


Featured researches published by Patricia E. Carrigan.


Critical Reviews in Biochemistry and Molecular Biology | 2004

Functional Specificity of Co-Chaperone Interactions with Hsp90 Client Proteins

Daniel L. Riggs; Marc B. Cox; Joyce Cheung-Flynn; Viravan Prapapanich; Patricia E. Carrigan; David F. Smith

A wide array of proteins in signal transduction pathways depend on Hsp90 and other chaperone components for functional maturation, regulation, and stability. Among these Hsp90 client proteins are steroid receptors, members from other classes of transcription factors, and representatives of both serine/threonine and tyrosine kinase families. Typically, dynamic complexes form on the client protein, and these consist of Hsp90- plus bound co-chaperones that often have enzymatic activities. In addition to its direct influence on client folding, Hsp90 locally concentrates co-chaperone activity within the client complex, and dynamic exchange of co-chaperones on Hsp90 facilitates sampling of co-chaperone activities that may, or may not, act on the client protein. We are just beginning to understand the nature of biochemical and molecular interactions between co-chaperone and Hsp90-bound client. This review focuses on the differential effects of Hsp90 co-chaperones toward client protein function and on the specificity that allows co-chaperones to discriminate between even closely related clients.


Cancer Research | 2007

Serine-Arginine Protein Kinase 1 Overexpression Is Associated with Tumorigenic Imbalance in Mitogen-Activated Protein Kinase Pathways in Breast, Colonic, and Pancreatic Carcinomas

Gregory M. Hayes; Patricia E. Carrigan; Laurence J. Miller

Aberrant patterns of pre-mRNA processing are typical of human malignancies, yet the mechanisms responsible for these changes remain undefined. We have recently shown overexpression of a core splice regulatory protein, serine-arginine protein kinase 1 (SRPK1), in dysplastic and neoplastic pancreatic ductular cells. In the present study, we have established that SRPK1 levels are similarly up-regulated in breast and colonic tumors where its expression increases coordinately with tumor grade. Targeting SRPK1 for inhibition using small interfering RNA in breast and colonic tumor cell lines in vitro resulted in both increased apoptotic potential and enhanced cell killing after treatment with gemcitabine and cisplatin. Recent reports have described multifaceted interactions between the mitogen-activated protein kinase (MAPK) and AKT signaling networks and the splice regulatory machinery. Consequently, we have shown that targeted inhibition of SRPK1 in tumor cells results in reduced phosphorylation of MAPK3, MAPK1, and AKT. Alterations in the splice pattern and resulting expression of MAPK kinase are implicated in mediating the antitumoral effects resulting from SRPK1 down-regulation. The up-regulation of SRPK1 in multiple cancers and its ability to regulate multiple relevant signaling pathways provide support for developing agents to inhibit this kinase for possible broad application to treat epithelial cancers.


Cancer Research | 2006

Targeting the RNA Splicing Machinery as a Novel Treatment Strategy for Pancreatic Carcinoma

Gregory M. Hayes; Patricia E. Carrigan; Alison M. Beck; Laurence J. Miller

Aberrant patterns of pre-mRNA splicing have been established for many human malignancies, yet the mechanisms responsible for these tumor-specific changes remain undefined and represent a promising area for therapeutic intervention. Using immunohistochemistry, we have localized the expression of a central splicing regulator, serine-arginine protein kinase 1 (SRPK1), to the ductular epithelial cells within human pancreas and have further shown its increased expression in tumors of the pancreas, breast, and colon. Small interfering RNA-mediated down-regulation of SRPK1 in pancreatic tumor cell lines resulted in a dose-dependent decrease in proliferative capacity and increase in apoptotic potential. Coordinately, the disruption of SRPK1 expression resulted in enhanced sensitivity of tumor cells to killing by gemcitabine and/or cisplatin. A dose-dependent reduction in the phosphorylation status of specific SR proteins was detected following the down-regulation of SRPK1 and is likely responsible for the observed alterations in expression of proteins associated with apoptosis and multidrug resistance. These data support SRPK1 as a new, potential target for the treatment of pancreatic ductular cancer that at present remains largely unresponsive to conventional therapies. Furthermore, these results support the development of innovative therapies that target not only specific splice variants arising during tumorigenesis but also the splice regulatory machinery that itself may be abnormal in malignant cells.


Protein Science | 2006

Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure

Patricia E. Carrigan; Laura A. Sikkink; David F. Smith; Marina Ramirez-Alvarado

The major heat shock protein (Hsp) chaperones Hsp70 and Hsp90 both bind the co‐chaperone Hop (Hsp70/Hsp90 organizing protein), which coordinates Hsp actions in folding protein substrates. Hop contains three tetratricopeptide repeat (TPR) domains that have binding sites for the conserved EEVD C termini of Hsp70 and Hsp90. Crystallographic studies have shown that EEVD interacts with positively charged amino acids in Hop TPR‐binding pockets (called carboxylate clamps), and point mutations of these carboxylate clamp positions can disrupt Hsp binding. In this report, we use circular dichroism to assess the effects of point mutations and Hsp70/Hsp90 peptide binding on Hop conformation. Our results show that Hop global conformation is destabilized by single point mutations in carboxylate clamp positions at pH 5, while the structure of individual TPR domains is unaffected. Binding of peptides corresponding to the C termini of Hsp70 and Hsp90 alters the global conformation of wild‐type Hop, whereas peptide binding does not alter conformation of individual TPR domains. These results provide biophysical evidence that Hop‐binding pockets are directly involved with domain:domain interactions, both influencing Hop global conformation and Hsp binding, and contributing to proper coordination of Hsp70 and Hsp90 interactions with protein substrates.


Genomics | 2003

Molecular analysis of human Siglec-8 orthologs relevant to mouse eosinophils: identification of mouse orthologs of Siglec-5 (mSiglec-F) and Siglec-10 (mSiglec-G)

Hideyuki Aizawa; Nives Zimmermann; Patricia E. Carrigan; James J. Lee; Marc E. Rothenberg; Bruce S. Bochner

We recently identified a novel human sialic acid binding immunoglobulin-like lectin, Siglec-8, using mRNA from human eosinophils. To search for a mouse Siglec (mSiglec) ortholog of Siglec-8 and other mouse Siglec paralogs, we conducted public database searches with cDNA sequences of human Siglec-5 to -10 and identified two novel mSiglecs. One has significant sequence identity to human Siglec-5 and is a splice variant of mSiglec-F. The other has greatest sequence identity to human Siglec-10 (mSiglec-G). Both mSiglecs have extracellular Ig-like domains and intracellular tyrosine-based motifs. To determine whether these mSiglecs were relevant to mouse eosinophils, RT-PCR and Northern blot analysis were performed. We detected expression of mSiglec-5 (or -F), -10, and -E mRNA in purified mouse eosinophils, but Northern blot data comparing expression in tissues from normal, IL-5 transgenic, and allergen-sensitized and -challenged mice suggest that mSiglec-10 is probably most relevant to mouse eosinophils.


Mammalian Genome | 2001

Mouse eosinophil-associated ribonucleases: a unique subfamily expressed during hematopoiesis

Stephania A. Cormier; Kirsten A. Larson; Shubing Yuan; Trella L. Mitchell; Kari Lindenberger; Patricia E. Carrigan; Nancy A. Lee; James J. Lee

Abstract. A unique family of ribonucleases was identified by exhaustive screening of genomic and cDNA libraries using a probe derived from a gene encoding a ribonuclease stored in the mouse eosinophil secondary granule. This family contains at least 13 genes, which encode ribonucleases, and two potential pseudogenes. The conserved sequence identity among these genes (∼70%), as well as the isolation/purification of these ribonucleases from eosinophil secondary granules, has led us to conclude that these genes form a unique clade in the mouse that we have identified as the Ear (Eosinophil-associated ribonuclease) gene family. Analyses of the nucleotide substitutions that have occurred among these ribonuclease genes reveal that duplication events within this family have been episodic, occurring within three unique periods during the past 18 × 106 years. Moreover, comparisons of non-synonymous (Ka) vs. synonymous (Ks) rates of nucleotide substitution show that although these genes conserve residues necessary for RNase activity, selective evolutionary pressure(s) exist such that acquired amino acid changes appear to be advantageous. The selective advantage of these amino acid changes is currently unclear, but the occurrence of this phenomenon in both the mouse and the human highlights the importance of these changes for Ear and, therefore, eosinophil effector function(s).


Journal of Immunology | 2002

Early Phase Bronchoconstriction in the Mouse Requires Allergen-Specific IgG

Jeffrey R. Crosby; Grzegorz Cieslewicz; Michael T. Borchers; Edie M. Hines; Patricia E. Carrigan; James J. Lee; Nancy A. Lee

Allergen provocation of allergic asthma patients is often characterized by an initial period of bronchoconstriction, or early phase reaction (EPR), that leads to maximal airway narrowing within 15–30 min, followed by a recovery period returning airway function to baseline within 1–2 h. In this study, we used a defined OVA provocation model and mice deficient for specific leukocyte populations to investigate the cellular/molecular origins of the EPR. OVA-sensitized/challenged wild-type (C57BL/6J) mice displayed an EPR following OVA provocation. However, this response was absent in gene knockout animals deficient of either B or T cells. Moreover, transfer of OVA-specific IgG, but not IgE, before the OVA provocation, was capable of inducing the EPR in both strains of lymphocyte-deficient mice. Interestingly, an EPR was also observed in sensitized/challenged mast cell-deficient mice following an OVA provocation. These data show that the EPR in the mouse is an immunologically based pathophysiological response that requires allergen-specific IgG but occurs independent of mast cell activities. Thus, in the mouse the initial period of bronchoconstriction following allergen exposure may involve neither mast cells nor IgE-mediated events.


Journal of Biological Chemistry | 2006

Hop Cleavage and Function in Granzyme B-induced Apoptosis

Andrew J. Bredemeyer; Patricia E. Carrigan; Todd A. Fehniger; David F. Smith; Timothy J. Ley

Granzyme B (GzmB) is a cytotoxic protease found in the granules of natural killer cells and cytotoxic T lymphocytes. GzmB cleaves multiple intracellular protein substrates, leading to caspase activation, DNA fragmentation, cytoskeletal instability, and rapid induction of target cell apoptosis. However, no known individual substrate is required for GzmB to induce apoptosis. GzmB is therefore thought to initiate multiple cell death pathways simultaneously to ensure the death of target cells. We previously identified Hop (Hsp70/Hsp90-organizing protein) as a GzmB substrate in a proteomic survey (Bredemeyer, A. J., Lewis, R. M., Malone, J. P., Davis, A. E., Gross, J., Townsend, R. R., and Ley, T. J. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 11785-11790). Hop is a co-chaperone for Hsp70 and Hsp90, which have been implicated in the negative regulation of apoptosis. We therefore hypothesized that Hop may have an anti-apoptotic function that is abolished upon cleavage, lowering the threshold for GzmB-induced apoptosis. Here, we show that Hop was cleaved directly by GzmB in vitro and in cells undergoing GzmB-induced apoptosis. Expression of the two cleavage fragments of Hop did not induce cell death. Although cleavage of Hop by GzmB destroyed Hop function in vitro, both cells overexpressing GzmB-resistant Hop and cells with a 90-95% reduction in Hop levels exhibited unaltered susceptibility to GzmB-induced death. We conclude that Hop per se does not set the threshold for susceptibility to GzmB-induced apoptosis. Although it is possible that Hop may be cleaved by GzmB as an “innocent bystander” during the induction of apoptosis, it may also act to facilitate apoptosis in concert with other GzmB substrates.


Omics A Journal of Integrative Biology | 2008

Extent and Diversity of Human Alternative Splicing Established by Complementary Database Annotation and Microarray Analysis

Jonathan Bingham; Patricia E. Carrigan; Laurence J. Miller; Subha Srinivasan

Alternative splicing generates functional diversity in higher organisms through alternative first and last exons, skipped and included exons, intron retentions and alternative donor, and acceptor sites. In large-scale microarray studies in humans and the mouse, emphasis so far has been placed on exon-skip events, leaving the prevalence and importance of other splice types largely unexplored. Using a new human splice variant database and a genome-wide microarray to probes thousands of splice events of each type, we measured differential expression of splice types across six pair of diverse cell lines and validated the database annotation process. Results suggest that splicing in humans is more complex than simple exon-skip events, which account for a minority of splicing differences. The relative frequency of differential expression of the splice types correlates with what is found by our annotation efforts. In conclusion, alternative splicing in human cells is considerably more complex than the canonical example of the exon skip. The complementary approaches of genome-wide annotation of alternative splicing in human and design of genome-wide splicing microarrays to measure differential splicing in biological samples provide a powerful high-throughput tool to study the role of alternative splicing in human biology.


Modern Pathology | 2008

Wild-type and splice-variant secretin receptors in lung cancer: overexpression in carcinoid tumors and peritumoral lung tissue

Meike Körner; Gregory M. Hayes; Patricia E. Carrigan; Ruth Rehmann; Laurence J. Miller; Jean C. Reubi

Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using 125I-[Tyr10] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.

Collaboration


Dive into the Patricia E. Carrigan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Haczku

University of California

View shared research outputs
Top Co-Authors

Avatar

Erwin W. Gelfand

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge