Patricia E. Gengaro
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia E. Gengaro.
American Journal of Physiology-renal Physiology | 1999
Hong Ling; Charles L. Edelstein; Patricia E. Gengaro; Xianhong Meng; Scott Lucia; Mladen Knotek; Adisorn Wangsiripaisan; Yeuxian Shi; Robert W. Schrier
Renal ischemia-reperfusion (I/R) injury was investigated in inducible nitric oxide synthase (iNOS) knockout mice. After a 26-min bilateral renal pedicle clamp, serum creatinine concentrations (in mg/dl) in wild-type mice after a 24-h reperfusion were 0.25 +/- 0.03 in sham-operated controls and 2.3 +/- 0.38 in ischemic mice (P < 0. 01); after 48 h, concentrations (in mg/dl) were 0.25 +/- 0.03 in controls and 2.0 +/- 0.18 in ischemic mice (P < 0.01). iNOS knockout mice demonstrated an attenuation of serum creatinine concentration after renal I/R injury. Serum creatinine concentrations (mg/dl) after a 24-h reperfusion were 2.3 +/- 0.22 in wild-type ischemic and 1.21 +/- 0.25 in iNOS knockout ischemic mice (P < 0.05); after 48 h, concentrations were 2.0 +/- 0.18 in wild-type ischemic and 0.96 +/- 0.25 in iNOS knockout ischemic mice (P < 0.01). Histological scoring of acute tubular necrosis in iNOS knockout mice was decreased compared with that in wild-type controls (0.88 +/- 0.2 vs. 3.3 +/- 0. 3, P < 0.05). iNOS protein in the renal cortex of wild-type mice subjected to renal I/R injury was undetectable up to 48 h. However, a strong upregulation of heat shock protein 72 expression was observed in renal cortex of iNOS knockout mice under basal conditions. In conclusion, kidneys of iNOS knockout mice were protected against ischemic acute renal failure. This protective effect may be related to a compensatory upregulation of heat shock protein 72.Renal ischemia-reperfusion (I/R) injury was investigated in inducible nitric oxide synthase (iNOS) knockout mice. After a 26-min bilateral renal pedicle clamp, serum creatinine concentrations (in mg/dl) in wild-type mice after a 24-h reperfusion were 0.25 ± 0.03 in sham-operated controls and 2.3 ± 0.38 in ischemic mice ( P < 0.01); after 48 h, concentrations (in mg/dl) were 0.25 ± 0.03 in controls and 2.0 ± 0.18 in ischemic mice ( P < 0.01). iNOS knockout mice demonstrated an attenuation of serum creatinine concentration after renal I/R injury. Serum creatinine concentrations (mg/dl) after a 24-h reperfusion were 2.3 ± 0.22 in wild-type ischemic and 1.21 ± 0.25 in iNOS knockout ischemic mice ( P < 0.05); after 48 h, concentrations were 2.0 ± 0.18 in wild-type ischemic and 0.96 ± 0.25 in iNOS knockout ischemic mice ( P< 0.01). Histological scoring of acute tubular necrosis in iNOS knockout mice was decreased compared with that in wild-type controls (0.88 ± 0.2 vs. 3.3 ± 0.3, P< 0.05). iNOS protein in the renal cortex of wild-type mice subjected to renal I/R injury was undetectable up to 48 h. However, a strong upregulation of heat shock protein 72 expression was observed in renal cortex of iNOS knockout mice under basal conditions. In conclusion, kidneys of iNOS knockout mice were protected against ischemic acute renal failure. This protective effect may be related to a compensatory upregulation of heat shock protein 72.
American Journal of Physiology-renal Physiology | 2008
Zhu Zhou; Patricia E. Gengaro; Wei Wang; Xue-qing Wang; Chunling Li; Sarah Faubel; Christopher J. Rivard; Robert W. Schrier
The interaction of tumor necrosis factor (TNF)-alpha with the endothelium is a pivotal factor during endotoxemia. Inflammatory conditions are characterized by the activation of the transcription factor NF-kappaB and the expression of inflammatory mediators. Previous reports indicate that inhibition of NF-kappaB activation during sepsis may be beneficial to the microvasculature. In addition, the phosphatidylinositol-3-kinase/Akt signaling pathway (PI3-kinase/Akt) has been shown to be cytoprotective. In this study, we examined the effect of inhibition of NF-kappaB and PI3-kinase/Akt on cell viability, cytokine production, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) generation by TNF-alpha-treated cultured microvascular endothelial cells. TNF-alpha induced significant cytotoxicity and was associated with increased inflammatory cytokines and NO and increased expression of iNOS. The NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented these increases and significantly attenuated the TNF-alpha-induced cytotoxicity. TNF-alpha also caused PI3-kinase/Akt activation, which was further increased by PDTC and prevented by the PI3-kinase inhibitor, LY294002. Inhibition of PI3-kinase/Akt also significantly potentiated TNF-alpha-mediated cytotoxicity. LY294002 treatment resulted in the appearance of increased apoptosis, compatible with the known anti-apoptotic properties of PI3-kinase/Akt. The present results therefore demonstrate a cytotoxic effect of TNF-alpha in microvascular endothelial cells which can be attenuated by NF-kappaB inhibition. In addition, PI3-kinase/Akt activation during TNF-alpha exposure may represent a compensatory anti-necrotic and anti-apoptotic pathway. The cytoprotective effects of NF-kappaB inhibition and PI3-kinase/Akt activation may have potential implications in the treatment of endotoxemia and septic shock.
American Journal of Physiology-renal Physiology | 2008
Wei Wang; Einath Zolty; Sandor Falk; Sandra N. Summer; Zhu Zhou; Patricia E. Gengaro; Sarah Faubel; Nicholas J. Alp; Keith M. Channon; Robert W. Schrier
Endotoxin-related acute kidney injury has been shown to profoundly induce nitric oxide (NO), which activates sympathetic and renin-angiotensin system, resulting in renal vasoconstriction. While vascular muscle cells are known to upregulate inducible NO synthase (iNOS), less is known about the endothelium as a source of NO during endotoxemia. Studies were, therefore, undertaken both in vitro in mouse microvascular endothelial cells and in vivo in transgenic mice with overexpression of endothelial GTP cyclohydrolase, the rate-limiting enzyme for tetrahydrobiopterin, a cofactor for NO synthase. LPS significantly induced endothelial cell iNOS expression and NO concentration in the culture media, with no change in endothelial NO synthase expression. GTP cyclohydrolase-1 transgenic (Tg) mice demonstrated a significant increase in baseline urine NO-to-creatinine ratio and a more significant increase in renal iNOS expression and serum NO levels with LPS treatment compared with the wild-type (WT) mice. Glomerular filtration rate and renal blood flow decreased significantly in Tg mice with 1.0 mg/kg LPS, while no changes were observed in WT with the same dose of LPS. Serum IL-6 levels were significantly higher in Tg compared with WT mice during endotoxemia. The antioxidant tempol improved the glomerular filtration rate in the Tg mice. Thus endothelium can be an important source of iNOS and serum NO concentration during endotoxemia, thereby increasing the sensitivity to AKI. Reactive oxygen species appear to be involved in this acute renal injury in Tg mice during endotoxemia.
Journal of Clinical Investigation | 1994
Andreas Kribben; Eric D. Wieder; Jack F.M. Wetzels; Luis Yu; Patricia E. Gengaro; Thomas J. Burke; Robert W. Schrier
Proceedings of the National Academy of Sciences of the United States of America | 1995
Charles L. Edelstein; Eric D. Wieder; Muhammad M. Yaqoob; Patricia E. Gengaro; Thomas J. Burke; Raphael A. Nemenoff; Robert W. Schrier
Kidney International | 1996
Muhammad M. Yaqoob; Charles L. Edelstein; Eric D. Wieder; Ahmed M. Alkhunaizi; Patricia E. Gengaro; Raphael A. Nemenoff; Robert W. Schrier
Kidney International | 1996
Charles L. Edelstein; Muhammad M. Yaqoob; Ahmed M. Alkhunaizi; Patricia E. Gengaro; Raphael A. Nemenoff; Kevin K. W. Wang; Robert W. Schrier
Kidney International | 2001
Adisorn Wangsiripaisan; Patricia E. Gengaro; Charles L. Edelstein; Robert W. Schrier
Journal of The American Society of Nephrology | 2000
Mladen Knotek; Matthew L. Esson; Patricia E. Gengaro; Charles L. Edelstein; Robert W. Schrier
Archive | 2016
Robert W. Schrier; Wei Wang; Sandor Falk; Patricia E. Gengaro; L Charles