Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Écija is active.

Publication


Featured researches published by Patricia Écija.


Journal of the American Chemical Society | 2013

Free Fructose Is Conformationally Locked

Emilio J. Cocinero; Alberto Lesarri; Patricia Écija; Alvaro Cimas; Benjamin G. Davis; Francisco J. Basterretxea; José A. Fernández; Fernando Castaño

Fructose has been examined under isolation conditions using a combination of UV ultrafast laser vaporization and Fourier-transform microwave (FT-MW) spectroscopy. The rotational spectra for the parent, all (six) monosubstituted (13)C species, and two single D species reveal unambiguously that the free hexoketose is conformationally locked in a single dominant β-pyranose structure. This six-membered-chair skeleton adopts a (2)C(5) configuration (equivalent to (1)C(4) in aldoses). The free-molecule structure sharply contrasts with the furanose form observed in biochemically relevant polysaccharides, like sucrose. The structure of free fructose has been determined experimentally using substitution and effective structures. The enhanced stability of the observed conformation is primarily attributed to a cooperative network of five intramolecular O-H···O hydrogen bonds and stabilization of both endo and exo anomeric effects. Breaking a single intramolecular hydrogen bond destabilizes the free molecule by more than 10 kJ mol(-1). The structural results are compared to ribose, recently examined with rotational resolution, where six different conformations coexist with similar conformational energies. In addition, several DFT and ab initio methods and basis sets are benchmarked with the experimental data.


Journal of Physical Chemistry Letters | 2012

Proton Tunneling in Heterodimers of Carboxylic Acids: A Rotational Study of the Benzoic Acid−Formic Acid Bimolecule

Luca Evangelisti; Patricia Écija; Emilio J. Cocinero; Fernando Castaño; Alberto Lesarri; Walther Caminati; R. Meyer

Tunneling effects have been measured in the pulsed jet Fourier transform microwave spectra of two isotopologues of the benzoic acid-formic acid bimolecule. The tunneling splittings are originated by the concerted proton transfer of the two carboxylic hydrogens. From the values of these splittings for the OH-OH and OD-OD species, it has been possible to model/size the barrier to the concerted double proton transfer.


Angewandte Chemie | 2013

Six pyranoside forms of free 2-deoxy-D-ribose.

Isabel Peña; Emilio J. Cocinero; Carlos Cabezas; Alberto Lesarri; Santiago Mata; Patricia Écija; Adam M. Daly; Alvaro Cimas; Celina Bermúdez; Francisco J. Basterretxea; Susana Blanco; José A. Fernández; Juan C. López; Fernando Castaño; José L. Alonso

Carbohydrates are one of the most versatile biochemical building blocks, widely acting in energetic, structural, or recognition processes. The interpretation of the biological activity of saccharides is based on the structure and relative stability of their conformers. One of the obstacles to resolving the basic structure issues arises from their ability to form strong intermolecular hydrogen bonds with polar solvents, which in turn can result in conformational changes. A clear picture of the conformational panorama of isolated 2-deoxyd-ribose has been revealed using Fourier-transform microwave spectroscopy in conjunction with a UV ultrafast laser ablation source. Additionally, the availability of rotational data has been the main bottle-neck for examining the presence of these building blocks in interstellar space, so these studies could also be useful to the astrochemistry community. 2-Deoxy-d-ribose (2DR, C5H10O4; Figure 1a) is an important naturally occurring monosaccharide, present in nucleotides, which are the building blocks for DNA. In DNA, 2DR is present in the furanose (five-membered) ring form, whereas free in aqueous solution it cyclizes into fiveor six-membered rings, with the latter—the pyranoid form—being dominant. By closing the chain into a six-membered ring, the C1 carbon atom is converted into an asymmetric center, yielding two possible stereochemical a and b anomeric species (Figure 1b). In aqueous solution, 2DR primarily exists as a mixture of nearly equal amounts of a and b pyranose forms, present in their low-energy chair conformations, C1 and C4 (Figure 1c). [4] Such configurations are connected through ring inversion, thus establishing the axial or equatorial position of the OH group for each conformer. In addition, the monossacharides exhibit an unusual preferential stabilization of pyranose rings containing an axial OH group at the C1 carbon over the equatorial orientation, widely known as the anomeric effect, although its physical origin remains controversial. Nevertheless, structural analysis of 2DRmust take into consideration the intramolecular hydrogen bonding between adjacent OH groups. The formation of hydrogenbond networks reinforces their stability owing to hydrogenbond cooperativity effects. Such networks are fundamental to the molecular recognition of carbohydrates. By dissecting all these factors we can determine the most stable conformers of 2DR and the relative arrangement of the different hydroxy groups under isolated conditions, such as in the gas phase. In vacuo theoretical calculations, carried out on a-/bpyranoses, a-/b-furanoses, and open-chain conformations, predict 15 furanose and pyranose forms (Figure 1d, Table 1) in an energy window of 12 kJmol 1 above the predicted cc-apyr C1 global minimum. The notation used to label the different conformers include the symbols a and b to denote the anomer type, C1 and C4 to denote the pyranose chair form, C2-endo or C3-endo to denote the furanose envelope forms, and “c” or “cc” to indicate a clockwise or counterclockwise configuration of the adjacent OH bonds, respectively. A number is added to provide theMP2 energy ordering within the same family. To validate the predicted conformational behavior, comparison with precise experimental data of 2DR is needed. Previous experiments to determine the conformation of monosaccharides were based on X-ray and NMR measurements. However, these data are influenced by environmental effects associated with the solvent or crystal lattice. Recently, an IR spectrum of 2DR in an inert matrix in


Physical Chemistry Chemical Physics | 2010

N-Methyl stereochemistry in tropinone: the conformational flexibility of the tropane motif

Emilio J. Cocinero; Alberto Lesarri; Patricia Écija; Jens-Uwe Grabow; José A. Fernández; Fernando Castaño

The intrinsic conformational and structural properties of the tropinone azabicycle have been investigated in a supersonic jet expansion using rotational spectroscopy. The spectrum revealed the presence of equatorial and axial conformers originated by the inversion of the N-methyl group, with the tropane motif adopting a distorted chair configuration. The determination of substitution and effective structures for the two conformers reveals the flexibility and structural changes associated with the N-methyl inversion, mostly a flattening at the nitrogen atom and a simultaneous rising of the carbonyl group in the axial form. Relative intensity measurements indicate that the conformational equilibrium is displaced towards the equatorial form, with a relative population in the jet of N(eq)/N(ax) approximately 2/1, which would correspond to a relative energy of ca. 2 kJ mol(-1) in pre-expansion conditions. Supporting ab initio calculations of the molecular properties and inversion barrier complemented the experimental work.


Journal of Chemical Physics | 2011

Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

Patricia Écija; Emilio J. Cocinero; Alberto Lesarri; Judith Millán; Francisco J. Basterretxea; José A. Fernández; Fernando Castaño

The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).


Journal of Physical Chemistry A | 2015

Accurate equilibrium structures for piperidine and cyclohexane.

J. Demaison; Norman C. Craig; Peter Groner; Patricia Écija; Emilio J. Cocinero; Alberto Lesarri

Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.


ChemPhysChem | 2013

The Distorted Tropane of Scopoline

Patricia Écija; Emilio J. Cocinero; Alberto Lesarri; Francisco J. Basterretxea; José A. Fernández; Fernando Castaño

The structural isomerization of scopine into scopoline (oscine) has been observed in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum evidences a single structure in the gas phase, providing a first description of the (three-ring) structurally distorted tropane in scopoline. The absence of rotational signatures of any scopine conformation suggests a practically quantitative isomerization at the vaporization temperatures of the experiment (ca. 90 °C). The determined rotational parameters of scopoline reveal the structural consequences of the intramolecular cyclation of scopine, which breaks the original epoxy group and creates a new ether bridge and a 7β-hydroxytropane configuration. The hydroxy group further stabilizes the molecule by an O-H⋅⋅⋅N intramolecular hydrogen bond, which, in turn, forces the N-methyl group to the less stable axial form. Supporting ab initio (MP2) and DFT (B3LYP, M06-2X) calculations are included.


ChemPhysChem | 2014

OH⋅⋅⋅N and CH⋅⋅⋅O Hydrogen Bonds Control Hydration of Pivotal Tropane Alkaloids: Tropinone⋅⋅⋅H2O Complex

Patricia Écija; Montserrat Vallejo-López; Luca Evangelisti; José A. Fernández; Alberto Lesarri; Walther Caminati; Emilio J. Cocinero

The effect of monohydration in equatorial/axial isomerism of the common motif of tropane alkaloids is investigated in a supersonic expansion by using Fourier-transform microwave spectroscopy. The rotational spectrum reveals the equatorial isomer as the dominant species in the tropinone⋅⋅⋅H2 O complex. The monohydrated complex is stabilized primarily by a moderate OH⋅⋅⋅N hydrogen bond. In addition, two CH⋅⋅⋅O weak hydrogen bonds also support this structure, blocking the water molecule and avoiding any molecular dynamics in the complex. The water molecule acts as proton donor and chooses the ternary amine group over the carbonyl group as a proton acceptor. The experimental work is supported by theoretical calculations; the accuracy of the B3LYP, M06-2X, and MP2 methods is also discussed.


Journal of Physical Chemistry A | 2012

Single Hydration of the Peptide Bond: The Case of the Vince Lactam

Patricia Écija; Francisco J. Basterretxea; Alberto Lesarri; Judith Millán; Fernando Castaño; Emilio J. Cocinero

2-Azabicyclo[2.2.1]hept-5-en-3-one (ABH or Vince lactam) and its monohydrated complex (ABH···H(2)O) have been observed in a supersonic jet by Fourier transform microwave spectroscopy. ABH is broadly used in the synthesis of therapeutic drugs, whereas the ABH···H(2)O system offers a simple model to explain the conformational preferences of water linked to a constrained peptidic bond. A single predominant form of the Vince lactam and its singly hydrated complex have been detected, determining the rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling tensor. The monohydrated complex is stabilized by two hydrogen bonds (C═O···H-O and N-H···O) closing a six-membered ring. The complexation energy has been estimated to be ∼10 kJ mol(-1) from experimental results. In addition, the observed structure in the gas phase has been compared with solid-phase diffraction data. The structural parameters and binding energies of ABH···H(2)O have also been compared with similar molecules containing peptide bonds. Ab initio (MP2) and density functional (M06-2X and B3LYP) methods have supported the experimental work, describing the rotational parameters and conformational landscape of the title compound and its singly hydrated complex.


The Astrophysical Journal | 2013

THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

I. Haykal; L. Margulès; Thérèse R. Huet; R.A. Motyienko; Patricia Écija; Emilio J. Cocinero; Francisco J. Basterretxea; José A. Fernández; Fernando Castaño; Alberto Lesarri; Jean-Claude Guillemin; B. Tercero; J. Cernicharo

Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its 14N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges for the title compound. Rotational constants for all the monosubstituted 13C and 15N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.

Collaboration


Dive into the Patricia Écija's collaboration.

Top Co-Authors

Avatar

Emilio J. Cocinero

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Basterretxea

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

José A. Fernández

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Fernando Castaño

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Iciar Uriarte

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge