Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Elizaquível is active.

Publication


Featured researches published by Patricia Elizaquível.


Food Microbiology | 2008

A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables

Patricia Elizaquível; Rosa Aznar

In this work, a new multiplex single-tube real-time PCR approach is presented for the detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus, three of the more frequent food-borne bacterial pathogens that are usually investigated in a variety of food matrices. The study includes the design and specificity testing, of a new primer and probe specific for Salmonella spp. Reaction conditions were adjusted for the simultaneous amplification and detection of specific fragments in the beta-glucuronidase (uidA, E. coli) and Thermonulease (nuc, Sta. aureus) genes, and in the replication origin sequence (oriC, Salmonella spp.). Melting-curve analysis using a SYBR Green I RTi-PCR approach showed characteristic T(m) values demonstrating the specific and efficient amplification of the three fragments. Subsequently, a TaqMan RTi-PCR approach was settled, using FAM, NED and VIC fluorescently labelled specific probes for an automated detection. It was equally sensitive than uniplex RTi-PCR reactions in Sta. aureus and E. coli O157:H7, using same amounts of purified DNA, and allowed detection of 10 genome equivalents in the presence of 10(2) or 10(4) genome equivalents of the other two pathogens. Finally, it was tested in artificially inoculated fresh, minimally processed vegetables, revealing a sensitivity of 10(3)CFUg(-1) each of these pathogens in direct detection, following DNA extraction with DNeasy Tissue Kit (Qiagen). The multiplex RTi-PCR developed scored the sensitivity recognised for PCR in food and it allows a high-throughput and automation, thus it is promising as a rapid and cost-effective test for the food industry.


Journal of Applied Microbiology | 2007

Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods

Empar Chenoll; M.C. Macián; Patricia Elizaquível; Rosa Aznar

Aim:  To determine the lactic acid bacteria (LAB) implicated in bloating spoilage of vacuum‐packed and refrigerated meat products.


Food Microbiology | 2012

Application of propidium monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water.

Patricia Elizaquível; G. Sánchez; María V. Selma; Rosa Aznar

The efficacy of sanitizing technologies in produce or in vegetable wash water is generally evaluated by plate count in selective media. This procedure is time consuming and can lead to misinterpretations because environmental conditions and sanitizing processes may affect bacterial growth or culturable capability. Thus, the aim of this study was to determine the applicability of a propidium monoazide real-time PCR (PMA-qPCR) method to monitor the inactivation by ultrasound treatment of foodborne bacteria in fresh-cut vegetable wash water. To this aim, lettuce wash water was artificially inoculated with Escherichia coli O157:H7 (10⁶ CFU/mL) and treated by means of a continuous ultrasonic irradiation with a power density of 0.280 kW/L. Quantification data obtained by PMA-qPCR and plate counts were statistically similar during the viability reduction of 99.996% which corresponds to 4.4 log reductions. Further reductions of E. coli O157:H7 were not detected by the PMA-qPCR method due to the limit of detection of this technique (20 CFU/mL). Inactivation data obtained by both techniques successfully fitted a linear model, giving no significant differences in kinetic parameters. These results indicate that the PMA-qPCR method is a suitable technique for evaluating ultrasonic disinfection of vegetable wash water, being able to distinguish between live and dead bacteria.


International Journal of Food Microbiology | 2012

A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables

Gloria Sánchez; Patricia Elizaquível; Rosa Aznar

Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables.


International Journal of Food Microbiology | 2009

Molecular characterization of the black Aspergillus isolates responsible for ochratoxin A contamination in grapes and wine in relation to taxonomy of Aspergillus section Nigri.

P.V. Martínez-Culebras; A. Crespo-Sempere; M. Sánchez-Hervás; Patricia Elizaquível; Rosa Aznar; Daniel Ramón

This work examines ochratoxigenic mycobiota in grapes by ap-PCR analysis sequence analysis of the ITS and IGS regions and ability to produce OTA. A comparison was also made with many reference strains of Aspergillus section Nigri. Based on ap-PCR profiles, derived from two microsatellite primers, three main groups were obtained by UPGMA cluster analysis corresponding to A. carbonarius, A. niger and A. tubingensis. The cophenetic correlation values corresponding to ap-PCR UPGMA analysis revealed a higher genetic variability in A. niger and A. tubingensis than in A. carbonarius. In addition, no genotypical differences could be established between OTA producers and nonproducers in all species analysed. Phylogenetic relationships inferred from ITS and IGS sequences are, mostly, congruent with earlier works. A. niger and A. tubingensis strains were closely related, but not identical, and they clustered into two distinct groups within the A. niger aggregate. Sequence analysis also showed genetic divergences between strains of A. foetidus and the rest of the Aspergillus section Nigri. Additionally, the phylogenetic analysis was consistent in separating a new group of ochratoxigenic strains, frequently isolated from grapes, named A. tubingensis-like. All strains of A. carbonarius analysed by sequence analysis had identical ITS and IGS sequences confirming the lack of significant genetic variability within this important ochratoxigenic species.


Journal of Dairy Science | 2011

Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1,3)-β-d-glucan

Patricia Elizaquível; Gloria Sánchez; Ana Salvador; Susana Fiszman; María Teresa Dueñas; Paloma López; P. Fernández de Palencia; Rosa Aznar

Probiotic cultures are increasingly being incorporated into a wide variety of food products. Although lactobacilli and bifidobacteria are the most frequently used, other lactic acid bacteria (LAB) have been reported to be potential probiotics. Of these, the cider isolates Pediococccus parvulus (strains 2.6 and CUPV22) and Lactobacillus suebicus CUPV221 produce a 2-branched (1,3)-β-d-glucan exopolysaccharide that decreases serum cholesterol levels and affects the activation of human macrophages. For this reason, these 3 strains were incorporated into yogurt, orange juice, and 2 juice-milk beverages to evaluate the effect of the food matrix on the resistance of these strains to simulated gastrointestinal tract conditions. Our results showed that incorporation of the LAB did not significantly affect the physical and rheological properties of the food matrices tested. When incorporated in yogurt, LAB strains population decreased by 2 to 3 log orders of magnitude during the shelf life of the product (28 d). However, no significant decrease was observed in the juice and juice-milk beverages during the same storage period, except for Lb. suebicus, whose viability decreased by 3 log orders of magnitude. When strains were subjected to gastrointestinal tract conditions, a decrease in the survival was observed at the lower pH (1.8). However, incorporation of these LAB strains into orange juice increases their resistance to lower pH conditions, thus improving survival to gastrointestinal stress. Moreover, a protective effect was observed for P. parvulus CUPV22 and 2.6 to gastric stress in juice-milk beverages and to gastrointestinal stress in yogurt. Lactobacillus suebicus CUPV221 did not survive when incorporated into yogurt and juice-milk beverage.


International Journal of Food Microbiology | 2015

Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina

Patricia Elizaquível; Alba Pérez-Cataluña; Alba Yépez; Cecilia Aristimuño; Eugenia Jiménez; Pier Sandro Cocconcelli; Graciela Vignolo; Rosa Aznar

The diversity of lactic acid bacteria (LAB) associated with chicha, a traditional maize-based fermented alcoholic beverage from Northwestern Argentina, was analyzed using culture-dependent and culture-independent approaches. Samples corresponding to 10 production steps were obtained from two local producers at Maimará (chicha M) and Tumbaya (chicha T). Whereas by culture-dependent approach a few number of species (Lactobacillus plantarum and Weissella viridescens in chicha M, and Enterococcus faecium and Leuconostoc mesenteroides in chicha T) were identified, a higher quantitative distribution of taxa was found in both beverages by pyrosequencing. The relative abundance of OTUs was higher in chicha M than in chicha T; six LAB genera were common for chicha M and T: Enterococcus, Lactococcus, Streptococcus, Weissella, Leuconostoc and Lactobacillus while Pediococcus only was detected in chicha M. Among the 46 identified LAB species, those of Lactobacillus were dominant in both chicha samples, exhibiting the highest diversity, whereas Enterococcus and Leuconostoc were recorded as the second dominant genera in chicha T and M, respectively. Identification at species level showed the predominance of Lb. plantarum, Lactobacillus rossiae, Leuconostoc lactis and W. viridescens in chicha M while Enterococcus hirae, E. faecium, Lc. mesenteroides and Weissella confusa predominated in chicha T samples. In parallel, when presumptive LAB isolates (chicha M: 146; chicha T: 246) recovered from the same samples were identified by ISR-PCR and RAPD-PCR profiles, species-specific PCR and 16S rRNA gene sequencing, most of them were assigned to the Leuconostoc genus (Lc. mesenteroides and Lc. lactis) in chicha M, Lactobacillus, Weissella and Enterococcus being also present. In contrast, chicha T exhibited the presence of Enterococcus and Leuconostoc, E. faecium being the most representative species. Massive sequencing approach was applied for the first time to study the diversity and evolution of microbial communities during chicha manufacture. Although differences in the LAB species profile between the two geographically different chicha productions were observed by culturing, a larger number for predominant LAB species as well as other minorities were revealed by pyrosequencing. The fine molecular inventory achieved by pyrosequencing provided more precise information on LAB population composition than culture-dependent analysis processes.


International Journal of Food Microbiology | 2012

Application of propidium monoazide quantitative PCR for selective detection of live Escherichia coli O157:H7 in vegetables after inactivation by essential oils

Patricia Elizaquível; Gloria Sánchez; Rosa Aznar

The use of propidium monoazide (PMA) is enjoying increased popularity among researchers in different fields of microbiology. Its use in combination with real-time PCR (qPCR) represents one of the most successful approaches to detect viable cells. PMA-qPCR has successfully been used to evaluate the efficacy of various disinfection technologies in different microorganisms. Initially, in this study the effect of four essential oils (EOs), cumin, clove, oregano and cinnamon, was evaluated on suspensions of the enterohemorrhagic Escherichia coli O157:H7 by PMA-qPCR, LIVE/DEAD BacLight flow cytometry analysis (LIVE/DEAD-FCM), and plate count. E. coli O157:H7 cells treated with EOs at killing concentrations were permeable to PMA which was confirmed by LIVE/DEAD-FCM. However, the PMA-qPCR assay allows specific quantification among the autochthonous microbiota of food products. Therefore, the PMA-qPCR assay was used to evaluate its applicability in artificially contaminated iceberg lettuce and soya sprouts. Amplification signal was negative for the spiking tests performed with any of the EO-killed E. coli cells. It demonstrates that the PMA-qPCR assay is a suitable technique for monitoring E. coli O157:H7 inactivation by essential oils in fresh-cut vegetables.


Journal of Applied Microbiology | 2007

Potential microbial risk factors related to soil amendments and irrigation water of potato crops

M.V. Selma; Ana Allende; Francisco López-Gálvez; Patricia Elizaquível; Rosa Aznar; María I. Gil

Aims: This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons.


Journal of Agricultural and Food Chemistry | 2010

Screening and selection of 2-branched (1,3)-β-D-glucan producing lactic acid bacteria and exopolysaccharide characterization.

Gaizka Garai-Ibabe; Javier Areizaga; Rosa Aznar; Patricia Elizaquível; Alicia Prieto; Ana Irastorza; María Teresa Dueñas

The ability to produce a 2-branched (1,3)-beta-D-glucan was screened in 147 lactic acid bacteria strains recovered from cider. Among them, 32 identified as Pediococcus parvulus exhibited a ropy character and were PCR positive for the presence of the gtf gene, related to the synthesis of the beta-glucan. Half of the strains produced more than 100 mg L(-1) of exopolysaccharide (EPS). (1)H NMR spectra of the crude EPSs were identical to that previously described for P. parvulus 2.6, indicating that all are 2-branched (1,3)-beta-D-glucans. The EPSs from two of the isolates were subjected to acid hydrolysis and methylation analysis, confirming the NMR results. Size exclusion chromatography (SEC) showed in all crude EPSs the presence of two different molecular mass fractions of about 10(7) Da and 10(4) Da, whose relative proportions varied among strains. EPS amounts and concentrations of high molecular fraction are linearly correlated. Intraspecific diversity of isolates was determined by RAPD profiles. Based on genotypic and phenotypic characteristics, two strains were selected to be further studied as probiotics.

Collaboration


Dive into the Patricia Elizaquível's collaboration.

Top Co-Authors

Avatar

Rosa Aznar

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Gloria Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Teresa Dueñas

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Idoia Ibarburu

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

María V. Selma

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paloma López

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Prieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Irastorza

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Ana Isabel Puertas

University of the Basque Country

View shared research outputs
Researchain Logo
Decentralizing Knowledge