Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Fletcher is active.

Publication


Featured researches published by Patricia Fletcher.


AIDS | 2006

Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides.

Patricia Fletcher; Julie Elliott; Jean-Charles Grivel; Leonid Margolis; Peter A. Anton; Ian McGowan; Robin J. Shattock

Objectives:Establishment of an in vitro model to evaluate rectal safety and the efficacy of microbicide candidates. Design:An investigation and characterization of human colorectal explant culture for screening candidate microbicides to prevent rectal transmission of HIV-1 infection. Methods:Human colorectal explants were cultured at the liquid–air interface on gelfoam rafts. Phenotypic characterization of HIV-1 target cells was performed by fluorescence-activated cell sorter analysis. HIV-1 infection was determined by the measurement of p24 antigen release, viral RNA, and proviral DNA accumulation. Results:Colorectal explant CD4 T cells expressed higher CCR5 and CXCR4 levels compared with blood. Minor differences between the rectal and sigmoid colon were observed with a trend for slightly higher CCR5 and HLA-DR expression in cells from the sigmoid colon. Favourable culture conditions were established for colorectal tissue. Although tissue structure degenerated with time, CD4: CD8 cell ratios remained constant, and tissue supported productive HIV-1 infection. The ability of candidate microbicides to inhibit R5 HIV-1 infection was evaluated. Polyanion candidates, PRO2000 and dextrin sulphate, provided 99% protection at 1 μg/ml and 1 mg/ml, respectively, equivalent to 1/5000 and 1/40 of the vaginal formulations. The nucleotide reverse transcriptase inhibitor (NRTI) 9-[2-(phosphonomethoxy)propyl]adenine (PMPA) provided protection at concentrations 1000-fold lower (10 μg/ml) than the proposed vaginal formulation (1%). Furthermore, non-NRTI UC-781 and TMC-120 provided greater than 99% inhibition at 3.3 or 0.33 μg/ml, respectively. No products demonstrated toxicity to rectal mucosa at inhibitory concentrations. Conclusion:Colorectal explant culture was shown to be a useful tool for the preclinical evaluation of potential microbicides. The data suggest that rectally applied microbicides might provide protection from HIV-1 transmission.


Antimicrobial Agents and Chemotherapy | 2009

Inhibition of Human Immunodeficiency Virus Type 1 Infection by the Candidate Microbicide Dapivirine, a Nonnucleoside Reverse Transcriptase Inhibitor

Patricia Fletcher; Sarah Harman; Hilde Azijn; Naomi Armanasco; P. Manlow; D. Perumal; M.-P. de Bethune; Jeremy Nuttall; J. Romano; Robin J. Shattock

ABSTRACT Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate.


Journal of Virology | 2005

The Nonnucleoside Reverse Transcriptase Inhibitor UC-781 Inhibits Human Immunodeficiency Virus Type 1 Infection of Human Cervical Tissue and Dissemination by Migratory Cells

Patricia Fletcher; Yana Kiselyeva; Greg Wallace; Joseph Romano; George E. Griffin; Leonid Margolis; Robin J. Shattock

ABSTRACT Heterosexual transmission of human immunodeficiency virus remains the major route of transmission worldwide; thus, there is an urgent need for additional prevention strategies, particularly those that could be controlled by women. Using cellular and tissue explant models, we have evaluated the potential activity of thiocarboxanilide nonnucleoside analogue reverse transcriptase inhibitor UC-781 as a vaginal microbicide. We were able to demonstrate a potent dose-dependent effect against R5 and X4 infections of T cells. In human cervical explant cultures, UC-781 was not only able to inhibit direct infection of mucosal tissue but was able to prevent dissemination of virus by migratory cells. UC-781 formulated into a carbopol gel (0.1%) retained significant activity against both direct tissue infection and transinfection mediated by migratory cells. Furthermore, UC-781 demonstrated prolonged inhibitory effects able to prevent both localized and disseminated infections up to 6 days post compound treatment. Additional studies were carried out to determine the concentration of compound that might be required to block a primary infection within draining lymph nodes. While a greater dose of compound was required to inhibit both X4 and R5 infections of lymphoid versus cervical explants, this was equivalent to a 1:3,000 dilution of the 0.1% formulation. Furthermore, a 2-h exposure to the compound prevented infection of lymphoid tissue when challenged up to 2 days later. The prolonged protection observed following pretreatment of both genital and lymphoid tissues with UC-781 suggests that this class of inhibitors may have unique advantages over other classes of potential microbicide candidates.


BJUI | 2006

Interleukin-8 levels in seminal plasma in chronic prostatitis/chronic pelvic pain syndrome and nonspecific urethritis.

Abbas Khadra; Patricia Fletcher; Graz Luzzi; Robin J. Shattock; Phillip Hay

To investigate whether a range of cytokines were detectable in the seminal plasma and urine of men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and nonspecific urethritis (NSU), and whether cytokine levels correlated with symptom severity in CP/CPPS.


Antimicrobial Agents and Chemotherapy | 2006

In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories.

Brigitte E. Beer; Gustavo F. Doncel; Fred C. Krebs; Robin J. Shattock; Patricia Fletcher; Robert W. Buckheit; Karen Watson; Charlene S. Dezzutti; James E. Cummins; Ena Bromley; Nicola Richardson-Harman; Luke A. Pallansch; Carol Lackman-Smith; Clay Osterling; Marie K. Mankowski; Shendra R. Miller; Bradley J. Catalone; Patricia A. Welsh; Mary K. Howett; Brian Wigdahl; Jim A. Turpin; Patricia Reichelderfer

ABSTRACT The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials.


Journal of Clinical Microbiology | 2009

Multisite Comparison of Anti-Human Immunodeficiency Virus Microbicide Activity in Explant Assays Using a Novel Endpoint Analysis

Nicola Richardson-Harman; Carol Lackman-Smith; Patricia Fletcher; Peter A. Anton; James W. Bremer; Charlene S. Dezzutti; Julie Elliott; Jean-Charles Grivel; Patricia C. Guenthner; Phalguni Gupta; Maureen Jones; Nell S. Lurain; Leonid Margolis; Swarna Mohan; Deena Ratner; Patricia Reichelderfer; Paula Roberts; Robin J. Shattock; James E. Cummins

ABSTRACT Microbicide candidates with promising in vitro activity are often advanced for evaluations using human primary tissue explants relevant to the in vivo mucosal transmission of human immunodeficiency virus type 1 (HIV-1), such as tonsil, cervical, or rectal tissue. To compare virus growth or the anti-HIV-1 efficacies of candidate microbicides in tissue explants, a novel soft-endpoint method was evaluated to provide a single, objective measurement of virus growth. The applicability of the soft endpoint is shown across several different ex vivo tissue types, with the method performed in different laboratories, and for a candidate microbicide (PRO 2000). The soft-endpoint method was compared to several other endpoint methods, including (i) the growth of virus on specific days after infection, (ii) the area under the virus growth curve, and (iii) the slope of the virus growth curve. Virus growth at the assay soft endpoint was compared between laboratories, methods, and experimental conditions, using nonparametric statistical analyses. Intra-assay variability determinations using the coefficient of variation demonstrated higher variability for virus growth in rectal explants. Significant virus inhibition by PRO 2000 and significant differences in the growth of certain primary HIV-1 isolates were observed by the majority of laboratories. These studies indicate that different laboratories can provide consistent measurements of anti-HIV-1 microbicide efficacy when (i) the soft endpoint or another standardized endpoint is used, (ii) drugs and/or virus reagents are centrally sourced, and (iii) the same explant tissue type and method are used. Application of the soft-endpoint method reduces the inherent variability in comparisons of preclinical assays used for microbicide development.


Journal of Virology | 2009

Human Immunodeficiency Virus Type 1 Nucleocapsid Inhibitors Impede trans Infection in Cellular and Explant Models and Protect Nonhuman Primates from Infection

Gregory S. Wallace; Cecilia Cheng-Mayer; Marco Schito; Patricia Fletcher; Lisa M. Miller Jenkins; Ryo Hayashi; A. Robert Neurath; Ettore Appella; Robin J. Shattock

ABSTRACT Here, we report that the S-acyl-2-mercaptobenzamide thioester (SAMT) class of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NCp7) inhibitors was able to prevent transmission of HIV-1 from infected cells, including primary cells. Furthermore, when SAMTs were introduced during an HIV-1 challenge of cervical explant tissue, inhibition of dissemination of infectious virus by cells emigrating from the tissue explants was observed. Preliminary studies using a rhesus macaque vaginal challenge model with mixed R5 and X4 simian-human immunodeficiency virus infection found that five of six monkeys were completely protected, with the remaining animal being partially protected, infected only by the R5 virus. These data suggest that SAMTs may be promising new drug candidates for further development in anti-HIV-1 topical microbicide applications.


Retrovirology | 2008

Preclinical evaluation of lime juice as a topical microbicide candidate

Patricia Fletcher; Sarah Harman; Adrienne R Boothe; Gustavo F. Doncel; Robin J. Shattock

BackgroundThe continued growth of the global HIV epidemic highlights the urgent need to develop novel prevention strategies to reduce HIV transmission. The development of topical microbicides is likely to take a number of years before such a product would be widely available. This has resulted in a call for the rapid introduction of simpler vaginal intervention strategies in the interim period. One suggested practice would be vaginal douching with natural products including lime or lemon juice. Here we present a comprehensive preclinical evaluation of lime juice (LiJ) as a potential intervention strategy against HIV.ResultsPre-treatment of HIV with LiJ demonstrated direct virucidal activity, with 10% juice inactivating the virus within 5 minutes. However, this activity was significantly reduced in the presence of seminal plasma, where inactivation required maintaining a 1:1 mixture of neat LiJ and seminal plasma for more than 5 minutes. Additionally, LiJ demonstrated both time and dose-dependent toxicity towards cervicovaginal epithelium, where exposure to 50% juice caused 75–90% toxicity within 5 minutes increasing to 95% by 30 minutes. Cervicovaginal epithelial cell monolayers were more susceptible to the effects of LiJ with 8.8% juice causing 50% toxicity after 5 minutes. Reconstructed stratified cervicovaginal epithelium appeared more resilient to LiJ toxicity with 30 minutes exposure to 50% LiJ having little effect on viability. However viability was reduced by 75% and 90% following 60 and 120 minutes exposure. Furthermore, repeat application (several times daily) of 25% LiJ caused 80–90% reduction in viability.ConclusionThese data demonstrate that the virucidal activity of LiJ is severely compromised in the presence of seminal plasma. Potentially, to be effective against HIV in vivo, women would need to apply a volume of neat LiJ equal to that of an ejaculate, and maintain this ratio vaginally for 5–30 minutes after ejaculation. Data presented here suggest that this would have significant adverse effects on the genital mucosa. These data raise serious questions about the plausibility and safety of such a prevention approach.


Antimicrobial Agents and Chemotherapy | 2012

Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors

Karyn McFadden; Patricia Fletcher; Fiorella Rossi; Kantharaju; Muddagowda Umashankara; Vanessa Pirrone; Srivats Rajagopal; Hosahudya N. Gopi; Fred C. Krebs; Julio Martín-García; Robin Shattock; Irwin M. Chaiken

ABSTRACT The first stage of human immunodeficiency virus type 1 (HIV-1) infection involves the fusion of viral and host cellular membranes mediated by viral envelope glycoprotein gp120. Inhibitors that specifically target gp120 are gaining increased attention as therapeutics or preventatives to prevent the spread of HIV-1. One promising new group of inhibitors is the peptide triazoles, which bind to gp120 and simultaneously block its interaction with both CD4 and the coreceptor. In this study, we assessed the most potent peptide triazole, HNG-156, for inhibitory breadth, cytotoxicity, and efficacy, both alone and in combination with other antiviral compounds, against HIV-1. HNG-156 inhibited a panel of 16 subtype B and C isolates of HIV-1 in a single-round infection assay. Inhibition of cell infection by replication-competent clinical isolates of HIV-1 was also observed with HNG-156. We found that HNG-156 had a greater than predicted effect when combined with several other entry inhibitors or the reverse transcriptase inhibitor tenofovir. Overall, we find that HNG-156 is noncytotoxic, has a broad inhibition profile, and provides a positive combination with several inhibitors of the HIV-1 life cycle. These results support the pursuit of efficacy and toxicity analyses in more advanced cell and animal models to develop peptide triazole family inhibitors of HIV-1 into antagonists of HIV-1 infection.


AIDS Research and Human Retroviruses | 2016

Short Communication: Limited Anti-HIV-1 Activity of Maraviroc in Mucosal Tissues.

Patricia Fletcher; Carolina Herrera; Naomi Armanasco; Jeremy Nuttall; Robin J. Shattock

The potential of maraviroc (MVC), a small-molecule CCR5 antagonist, as a candidate to prevent HIV-1 sexual transmission by oral or topical dosing has not yet been completely established. Using relevant cellular and mucosal tissue explant models, we show partial antiviral activity of MVC when tested in multiple preclinical dosing strategies.Abstract The potential of maraviroc (MVC), a small-molecule CCR5 antagonist, as a candidate to prevent HIV-1 sexual transmission by oral or topical dosing has not yet been completely established. Using relevant cellular and mucosal tissue explant models, we show partial antiviral activity of MVC when tested in multiple preclinical dosing strategies.

Collaboration


Dive into the Patricia Fletcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo F. Doncel

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Leonid Margolis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrienne R Boothe

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge