Patricia Isabel da Mota E. Silva
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Patricia Isabel da Mota E. Silva is active.
Publication
Featured researches published by Patricia Isabel da Mota E. Silva.
PLOS ONE | 2011
Catarina I.M. Martins; Patricia Isabel da Mota E. Silva; Luís E.C. Conceição; Benjamín Costas; Erik Höglund; Øyvind Øverli; J.W. Schrama
Consistent individual differences in cognitive appraisal and emotional reactivity, including fearfulness, are important personality traits in humans, non-human mammals, and birds. Comparative studies on teleost fishes support the existence of coping styles and behavioral syndromes also in poikilothermic animals. The functionalist approach to emotions hold that emotions have evolved to ensure appropriate behavioral responses to dangerous or rewarding stimuli. Little information is however available on how evolutionary widespread these putative links between personality and the expression of emotional or affective states such as fear are. Here we disclose that individual variation in coping style predicts fear responses in Nile tilapia Oreochromis niloticus, using the principle of avoidance learning. Fish previously screened for coping style were given the possibility to escape a signalled aversive stimulus. Fearful individuals showed a range of typically reactive traits such as slow recovery of feed intake in a novel environment, neophobia, and high post-stress cortisol levels. Hence, emotional reactivity and appraisal would appear to be an essential component of animal personality in species distributed throughout the vertebrate subphylum.
Physiology & Behavior | 2013
Danielle Caroline Laursen; Patricia Isabel da Mota E. Silva; Bodil Katrine Larsen; Erik Höglund
The effect of stocking density on indicators of welfare has been investigated by several studies on farmed rainbow trout Oncorhynchus mykiss. However, the densities at which welfare are compromised remain ambiguous. Here three different stocking density treatments were selected based on the results of a previous study, where levels of crowding where determined using the spatial distribution of fish in two-tank systems. An un-crowded low density of 25 kgm(-3), the highest density accepted by the fish without showing indications of crowding stress of 80 kgm(-3) as the intermediate density, and the highest density accepted by the fish showing indications of crowding stress of 140 kgm(-3) as the high density were investigated. The aim of the present study was to examine the effect of being held at these densities on indicators of welfare. This was achieved through oxygen consumption measurements using automated respirometry, recording fin erosion, determining scale loss and analysing plasma cortisol and brain serotonergic activity levels. The results obtained in the present study indicated that at the lowest density the fish had the space and opportunity to display their natural aggressive behaviour and that the fish held at the highest density were exposed to a situation of confinement.
Hormones and Behavior | 2011
M. Åberg Andersson; Patricia Isabel da Mota E. Silva; J.F. Steffensen; Erik Höglund
Maternal size, age, and allostatic load influence offspring size, development, and survival. Some of these effects have been attributed to the release of glucocorticoids, and individual variation in these stress hormones is related to a number of traits. Correlated traits are often clustered and used to define the proactive and reactive stress coping styles. Although stress coping styles have been identified in a number of animal groups, little is known about the coupling between stress coping style and offspring characteristics. In the present study, plasma cortisol levels in ovulated mothers and cortisol levels in non-fertilized eggs from two rainbow trout (Oncorhynchus mykiss) strains selected for high (HR) and low (LR) post-stress plasma cortisol levels were compared. Offspring characteristics such as egg size, larval growth, and energy reserves also were compared between the two strains. Maternal plasma and egg cortisol levels were correlated, but no difference between the HR and LR strains was detected in either parameter. LR females produced larger eggs, and larvae with larger yolk sacs compared to HR females, however no differences in larval body size (excluding the yolk) was detected between strains. Considering that the HR and LR strains have a number of correlated behavioral and physiological traits that resemble the reactive and proactive stress coping styles, respectively, the results suggest that proactive mothers invest more energy into their offspring, producing larvae with larger energy reserves. It is possible that larger energy reserves in proactive larvae support the energy requirement for establishing and defending territory in salmonid fish. Furthermore, in the present study we found a positive relationship between mother plasma cortisol and egg cortisol; however neither mother plasma cortisol nor egg cortisol differed between strains. These results indicate that cortisol endowment from the mother to the offspring plays a minor role in the transfer of the behavioral and physiological traits which separates these strains.
Physiology & Behavior | 2015
Patricia Isabel da Mota E. Silva; Catarina I.M. Martins; Uniza Wahid Khan; Hans Magnus Gjøen; Øyvind Øverli; Erik Höglund
Evolution has resulted in behavioural responses to threat which show extensive similarities between different animal species. The reaction to predator cues is one example of such prevailing responses, and functional homologies to mammalian limbic regions involved in threat-sensitive behaviour have been found in the teleost telencephalon. The dorsolateral (Dl) and dorsomedial (Dm) regions of the pallium are thought to perform hippocampus and amygdala-like functions respectively. To what degree these regions are involved in the neuroendocrine responses to stress and predator cues however remains largely unknown. In the present study the involvement of Dl and Dm in such responses was investigated by exposing Nile tilapia (Oreochromis niloticus) to a standardized confinement stress and to skin extract from conspecifics. Nile tilapia develops a characteristic anticipatory behaviour to hand feeding, and effects of skin extract on this behaviour and locomotor activity were studied to characterise threat sensitive behaviour. Nile tilapia responded behaviourally to conspecific alarm cues by reducing feeding anticipatory behaviour. This may reflect a general elevation of alertness, and further studies combining skin extract with other challenges are needed to reveal neuroendocrine effects associated with this predator cue. Confinement stress resulted in an elevation of cortisol and serotonin (5-hydroxytryptamine, 5-HT) metabolism in both Dl and Dm. A similar tendency was observed in fish exposed to chemical alarm cues, but this effect did not reach the level of statistical significance. Hence, limbic responses to stress and fear, akin to those seen in extant mammals, are also present in the teleost lineage.
Fish Physiology and Biochemistry | 2014
Patricia Isabel da Mota E. Silva; Catarina I.M. Martins; Erik Höglund; Hans Magnus Gjøen; Øyvind Øverli
Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative studies, however, reveal a strong degree of evolutionary conservation of neural mechanisms controlling such behaviours throughout the vertebrate lineage. Previous studies have indicated duration of stress-induced anorexia as a consistent individual characteristic in teleost fishes. This study aims to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented as an overall measure incorporating several behavioural parameters in a Principle Component Analyses (PCA). This study thus confirms individual variation in brain 5-HT neurotransmission as a correlate to complex behavioural syndromes related to feeding motivation.
Frontiers in Neuroscience | 2017
Erik Höglund; Patricia Isabel da Mota E. Silva; Marco A. Vindas; Øyvind Øverli
Individual variation in the ability to modify previously learned behavior is an important dimension of trait correlations referred to as coping styles, behavioral syndromes or personality. These trait clusters have been shaped by natural selection, and underlying control mechanisms are often conserved throughout vertebrate evolution. In teleost fishes, behavioral flexibility and coping style have been studied in the high (HR) and low-responsive (LR) rainbow trout lines. Generally, proactive LR trout show a behavior guided by previously learned routines, while HR trout show a more flexible behavior relying on environmental cues. In mammals, routine dependent vs. flexible behavior has been connected to variation in limbic dopamine (DA) signaling. Here, we studied the link between limbic DA signaling and individual variation in flexibility in teleost fishes by a reversal learning approach. HR/LR trout were challenged by blocking a learned escape route, previously available during interaction with a large and aggressive conspecific. LR trout performed a higher number of failed escape attempts against the transparent blockage, while HR trout were more able to inhibit the now futile escape impulse. Regionally discrete changes in DA neurochemistry were observed in micro dissected limbic areas of the telencephalon. Most notably, DA utilization in the dorsomedial telencephalon (DM, a suggested amygdala equivalent) remained stable in HR trout in response to reversal learning under acute stress, while increasing from an initially lower level in LR trout. In summary, these results support the view that limbic homologs control individual differences in behavioral flexibility even in non-mammalian vertebrates.
Scientific Reports | 2016
Uniza Wahid Khan; Øyvind Øverli; Patricia M. Hinkle; Farhan Ahmad Pasha; Ida Beitnes Johansen; Ingunn Berget; Patricia Isabel da Mota E. Silva; Silje Kittilsen; Erik Höglund; Stig W. Omholt; Dag Inge Våge
In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity.
Journal of Fish Biology | 2013
Madelene Åberg Andersson; Danielle Caroline Laursen; Patricia Isabel da Mota E. Silva; Erik Höglund
The relationship between the timing of emergence from spawning gravel and growth after emergence was investigated in farmed Oncorhynchus mykiss. A relationship between the time of emergence and growth became evident after 6 months of rearing, where individuals with an intermediate emergence time had grown larger compared with early and late emerging individuals.
British Journal of Nutrition | 2017
Erik Höglund; Øyvind Øverli; Madelene Åberg Andersson; Patricia Isabel da Mota E. Silva; Danielle Caroline Laursen; Maria Moltesen; Åshild Krogdahl; Joachim Schjolden; Svante Winberg; Marco A. Vindas; Ian Mayer; Marie Hillestad
Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic salmon. Fish were fed diets containing one, two or three times the Trp content in normal feed for 1 week. Subsequently, fish were reintroduced to control feed and were exposed to acute crowding stress for 1 h, 8 and 21 d post Trp treatment. Generally, acute crowding resulted in lower plasma cortisol levels in fish treated with 3×Trp compared with 1×Trp- and 2×Trp-treated fish. The same general pattern was reflected in telencephalic 5-HTergic turnover, for which 3×Trp-treated fish showed decreased values compared with 2×Trp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.
Proceedings of SPIE | 2017
Torben Anker Lenau; Thomas Hesselberg; Alexandros Dimitrios Drakidis; Patricia Isabel da Mota E. Silva; Silvana Gomes
The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion speed and vibration. Combining slow insertion speed with skin tension and slow vibration reduces the penetration force with 40%.