Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia J. Sime is active.

Publication


Featured researches published by Patricia J. Sime.


Journal of Clinical Investigation | 1997

Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung.

Patricia J. Sime; Zhou Xing; Frank L. Graham; K G Csaky; J. Gauldie

Transforming growth factor (TGF)-beta1 has been implicated in the pathogenesis of fibrosis based upon its matrix-inducing effects on stromal cells in vitro, and studies demonstrating increased expression of total TGF-beta1 in fibrotic tissues from a variety of organs. The precise role in vivo of this cytokine in both its latent and active forms, however, remains unclear. Using replication-deficient adenovirus vectors to transfer the cDNA of porcine TGF-beta1 to rat lung, we have been able to study the effect of TGF-beta1 protein in the respiratory tract directly. We have demonstrated that transient overexpression of active, but not latent, TGF-beta1 resulted in prolonged and severe interstitial and pleural fibrosis characterized by extensive deposition of the extracellular matrix (ECM) proteins collagen, fibronectin, and elastin, and by emergence of cells with the myofibroblast phenotype. These results illustrate the role of TGF-beta1 and the importance of its activation in the pulmonary fibrotic process, and suggest that targeting active TGF-beta1 and steps involved in TGF-beta1 activation are likely to be valuable antifibrogenic therapeutic strategies. This new and versatile model of pulmonary fibrosis can be used to study such therapies.


American Journal of Pathology | 1998

Transfer of Tumor Necrosis Factor-α to Rat Lung Induces Severe Pulmonary Inflammation and Patchy Interstitial Fibrogenesis with Induction of Transforming Growth Factor-β1 and Myofibroblasts

Patricia J. Sime; Robert A. Marr; David Gauldie; Zhou Xing; Bryan R. Hewlett; Frank L. Graham; Jack Gauldie

Tumor necrosis factor-alpha is up-regulated in a variety of different human immune-inflammatory and fibrotic pulmonary pathologies. However, its precise role in these pathologies and, in particular, the mechanism(s) by which it may induce fibrogenesis are not yet elucidated. Using a replication-deficient adenovirus to transfer the cDNA of tumor necrosis factor-alpha to rat lung, we have been able to study the effect of transient but prolonged (7 to 10 days) overexpression of tumor necrosis factor-alpha in normal adult pulmonary tissue. We have demonstrated that local overexpression resulted in severe pulmonary inflammation with significant increases in neutrophils, macrophages, and lymphocytes and, to a lesser extent, eosinophils, with a peak at day 7. By day 14, the inflammatory cell accumulation had declined, and fibrogenesis became evident, with fibroblast accumulation and deposition of extracellular matrix proteins. Fibrotic changes were patchy but persisted to beyond day 64. To elucidate the mechanism underlying this fibrogenesis, we examined bronchoalveolar fluids for the presence of the fibrogenic cytokine transforming growth factor-beta1 and tissues for induction of alpha-smooth muscle actin-rich myofibroblasts. Transforming growth factor-beta1 was transiently elevated from day 7 (peak at day 14) immediately preceding the onset of fibrogenesis. Furthermore, there was a striking accumulation of myofibroblasts from day 7, with the most extensive and intense immunostaining at day 14, ie, coincident with the up-regulation of transforming growth factor-beta1 and onset of fibrogenesis. Thus, we have provided a model of tumor necrosis factor-alpha-mediated pulmonary inflammation and fibrosis in normal adult lung, and we suggest that the fibrogenesis may be mediated by the secondary up-regulation of transforming growth factor-beta1 and induction of pulmonary myofibroblasts.


Biochemical Society Transactions | 2007

TGF-β, Smad3 and the process of progressive fibrosis

Jack Gauldie; P. Bonniaud; Patricia J. Sime; Kjetil Ask; Martin Kolb

Transient adenovirus-mediated gene transfer of active TGF-β1 (transforming growth factor-β1) induces severe and progressive fibrosis in rodent lung without apparent inflammation. Alternatively, transfer of IL-1β (interleukin 1β) induces marked tissue injury and inflammation, which develops into progressive fibrosis, associated with an increase in TGF-β1 concentrations in lung fluid and tissue. Both vector treatments induce a fibrotic response involving myofibroblasts and progressive matrix deposition starting at the peri-bronchial site of expression and extending over days to involve the entire lung and pleural surface. Administration of the TGF-β1 vector to the pleural space induces progressive pleural fibrosis, which minimally extends into the lung parenchyma. The mechanisms involved in progressive fibrosis need to account for the limitation of fibrosis to specific organs (lung fibrosis and not liver fibrosis or vice versa) and the lack of effect of anti-inflammatory treatments in regulating progressive fibrosis. TGF-β1 is a key cytokine in the process of fibrogenesis, using intracellular signalling pathways involving the ALK5 receptor and signalling molecules Smad2 and Smad3. Transient gene transfer of either TGF-β1 or IL-1β to Smad3-null mouse lung provides little evidence of progressive fibrosis and no fibrogenesis-associated genes are induced. These results suggest that mechanisms of progressive fibrosis involve factors presented within the context of the matrix that define the microenvironment for progressive matrix deposition.


American Journal of Respiratory and Critical Care Medicine | 2014

Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report

Timothy S. Blackwell; Andrew M. Tager; Zea Borok; Bethany B. Moore; David A. Schwartz; Kevin J. Anstrom; Ziv Bar-Joseph; Peter B. Bitterman; Michael R. Blackburn; William Bradford; Kevin K. Brown; Harold A. Chapman; Harold R. Collard; Gregory P. Cosgrove; Robin R. Deterding; Ramona Doyle; Kevin R. Flaherty; Christine Kim Garcia; James S. Hagood; Craig A. Henke; Erica L. Herzog; Cory M. Hogaboam; Jeffrey C. Horowitz; Talmadge E. King; James E. Loyd; William Lawson; Clay B. Marsh; Paul W. Noble; Imre Noth; Dean Sheppard

The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.


Respiratory Research | 2001

A new direction in the pathogenesis of idiopathic pulmonary fibrosis

Jack Gauldie; Martin Kolb; Patricia J. Sime

A recent review article suggested that idiopathic pulmonary fibrosis (IPF) is a disease that is associated more with abnormal wound healing than with inflammation. Data derived from transgenic and gene transfer rodent models suggest that lung inflammation may be a necessary but insufficient component of IPF, and that at some point in the natural history of the disease IPF becomes no longer dependent on the inflammatory response for propagation. Altered microenvironment and involvement of epithelial cell/mesenchymal cell interaction are the most likely contributors to the pathogenesis of this chronic progressive disorder.


Experimental Lung Research | 2006

OROPHARYNGEAL ASPIRATION OF A SILICA SUSPENSION PRODUCES A SUPERIOR MODEL OF SILICOSIS IN THE MOUSE WHEN COMPARED TO INTRATRACHEAL INSTILLATION

Heather F. Lakatos; Heather A. Burgess; Thomas H. Thatcher; Michelle Redonnet; Eric Hernady; Jacqueline P. Williams; Patricia J. Sime

Instillation of crystalline silica into the lungs of mice is a common experimental model of pulmonary fibrosis. Typically, a suspension of silica in saline is injected into the trachea via intubation or surgical tracheostomy. These techniques require a high degree of technical skill, have a lengthy training period, and can suffer from a high failure rate. In oropharyngeal aspiration, a droplet of liquid is placed in the animals mouth while simultaneously holding its tongue (to block the swallow reflex) and pinching its nose shut, forcing it to breathe through its mouth, aspirating the liquid. To determine whether oropharyngeal aspiration (OA) could replace intratracheal instillation (IT) in a model of silica-induced fibrosis, a comparison was performed. Crystalline silica was introduced into the lungs of male C57BL/6 mice by the IT or OA procedure, and the resulting inflammation and fibrosis was assessed after 3 weeks. IT and OA instillation of silica both resulted in neutrophilic inflammation and fibrotic changes, including interstitial fibrosis and dense fibrotic foci. Mice treated via IT demonstrated a few large lesions proximal to conducting airways with little involvement of the distal parenchyma and large interanimal variability. In contrast, OA resulted in a diffuse pathology with numerous fibrotic foci distributed throughout the lung parenchyma, which is more representative of human fibrotic lung disease. OA- but not IT-treated mice exhibited significantly increased lung collagen content. Furthermore, the interanimal variability within the OA group was significantly less than in the IT group. Oropharyngeal aspiration should be considered as an alternative to intratracheal instillation of silica and other particulates in studies of respiratory toxicity and lung disease.


Journal of Biological Chemistry | 2008

The Aryl Hydrocarbon Receptor Attenuates Tobacco Smoke-induced Cyclooxygenase-2 and Prostaglandin Production in Lung Fibroblasts through Regulation of the NF-κB Family Member RelB

Carolyn J. Baglole; Sanjay B. Maggirwar; Thomas A. Gasiewicz; Thomas H. Thatcher; Richard P. Phipps; Patricia J. Sime

Diseases such as chronic obstructive pulmonary disease and lung cancer caused by cigarette smoke affect millions of people worldwide. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that influences responses to certain environmental pollutants such as tobacco smoke. However, the physiological function(s) of the AhR is unknown. Herein we propose that the physiologic role of the AhR is to limit inflammation. We show that lung fibroblasts from AhR–/– mice produce a heightened inflammatory response to cigarette smoke, typified by increased levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs), when compared with wild type (AhR+/+) fibroblasts. This response was dependent on AhR expression as transient transfection of an AhR expression plasmid into AhR–/– fibroblasts significantly attenuated the smoke-induced COX-2 and PG production, confirming the anti-inflammatory role of the AhR. The AhR can interact with NF-κB. However, the heightened inflammatory response observed in AhR–/– fibroblasts was not the result of NF-κB (p50/p65) activation. Instead it was coupled with a loss of the NF-κB family member RelB in AhR–/– fibroblasts. Taken together, these studies provide compelling evidence that AhR expression limits proinflammatory COX-2 and PG production by maintaining RelB expression. The association between RelB and AhR may represent a new therapeutic and more selective target with which to combat inflammation-associated diseases.


PLOS ONE | 2011

PPAR-γ Ligands Repress TGFβ-Induced Myofibroblast Differentiation by Targeting the PI3K/Akt Pathway: Implications for Therapy of Fibrosis

Ajit A. Kulkarni; Thomas H. Thatcher; Keith C. Olsen; Sanjay B. Maggirwar; Richard P. Phipps; Patricia J. Sime

Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFβ also activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here, we report that PPAR-γ ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic (IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-γ-independent mechanism. The PI3K inhibitor LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFβ-stimulated myofibroblast differentiation, as determined by Western blotting for α-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFβ-driven phosphorylation of Akt, while CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is dependent on their electrophilic properties. PPAR-γ ligands inhibited TGFβ-induced Akt phosphorylation via both post-translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent on TGFβ-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-γ ligands inhibit TGFβ signaling by affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-γ ligands and small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics.


PLOS ONE | 2013

A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation.

Hsi-Min Hsiao; Ramil Sapinoro; Thomas H. Thatcher; Amanda Croasdell; Elizabeth P. Levy; Robert A. Fulton; Keith C. Olsen; Stephen J. Pollock; Charles N. Serhan; Richard P. Phipps; Patricia J. Sime

Introduction Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis). Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA). We hypothesize that resolvin D1 (RvD1) has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation. Methods Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed. Results RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2) macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure. Conclusions RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins have strong potential as a novel therapeutic approach to resolve lung injury caused by smoke and pulmonary toxicants.


Current topics in pathology. Ergebnisse der Pathologie | 1999

Transforming growth factor-beta gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis.

J. Gauldie; Patricia J. Sime; Zhou Xing; B. Marr; G. M. Tremblay

Many cytokines have been implicated in the initiation or propagation of fibrogenesis. In particular, the early-phase inflammatory cytokines, interleukin (IL) and tumor necrosis factor (TNF), and members of the chemokine families, including IL and monocyte chemotactic peptide (MCP-1) are known to be present in inflamed tissue, both at the beginning and at advanced stages of fibrosis. In addition, growth and differentiating factors, such as the fibroblast growth factors (FGFs), transforming growth factors (TGFs) and platelet-derived growth factors (PDGFs) are all implicated in the pathogenesis of fibrosis through their putative mode of action and demonstrated presence in fibrotic tissue. Most data implicating the various cytokines arises from studies involving immunohistochemistry or detection of gene expression within fibrotic tissue and from in vitro experiments showing activity on matrix formation by structural cells (fibroblasts, smooth-muscle cells, etc.).

Collaboration


Dive into the Patricia J. Sime's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge