Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia J. Vance is active.

Publication


Featured researches published by Patricia J. Vance.


Cell | 1996

CD4-independent infection by HIV-2 is mediated by Fusin/CXCR4

Michael J. Endres; Paul R. Clapham; Mark Marsh; Ména Ahuja; Julie D. Turner; Áine McKnight; Jill F Thomas; Beth Stoebenau-Haggarty; Sunny Choe; Patricia J. Vance; Timothy N. C. Wells; Christine A. Power; Shaheen S Sutterwala; Robert W. Doms; Nathaniel R. Landau; James A. Hoxie

Several members of the chemokine receptor family have been shown to function in association with CD4 to permit HIV-1 entry and infection. However, the mechanism by which these molecules serve as CD4-associated cofactors is unclear. In the present report, we show that one member of this family, termed Fusin/ CXCR4, is able to function as an alternative receptor for some isolates of HIV-2 in the absence of CD4. This conclusion is supported by the finding that (1) CD4-independent infection by these viruses is inhibited by an anti-Fusin monoclonal antibody, (2) Fusin expression renders human and nonhuman CD4-negative cell lines sensitive to HIV-2-induced syncytium induction and/or infection, and (3) Fusin is selectively down-regulated from the cell surface following HIV-2 infection. The finding that one chemokine receptor can function as a primary viral receptor strongly suggests that the HIV envelope glycoprotein contains a binding site for these proteins and that differences in the affinity and/or the availability of this site can extend the host range of these viruses to include a number of CD4-negative cell types.


Journal of Virology | 2001

In Vivo Attenuation of Simian Immunodeficiency Virus by Disruption of a Tyrosine-Dependent Sorting Signal in the Envelope Glycoprotein Cytoplasmic Tail

Patricia N. Fultz; Patricia J. Vance; Michael J. Endres; Binli Tao; Jeffrey D. Dvorin; Ian C. Davis; Jeffrey D. Lifson; David C. Montefiori; Mark Marsh; Michael H. Malim; James A. Hoxie

ABSTRACT Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxφ) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (ΔGY). To assess the in vivo replication competence, all viruses contained a stop codon innef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239ΔGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4+ T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239ΔGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nefstop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxφ signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.


Traffic | 2000

The Simian Immunodeficiency Virus Envelope Glycoprotein Contains Multiple Signals that Regulate its Cell Surface Expression and Endocytosis

Katherine Bowers; Annegret Pelchen-Matthews; Stefan Höning; Patricia J. Vance; Lisa Creary; Beth Haggarty; Josephine Romano; Wolfgang Ballensiefen; James A. Hoxie; Mark Marsh

The cell surface expression of the envelope glycoproteins (Envs) of primate immunodeficiency viruses is, at least in part, regulated by endocytosis signal(s) located in the Env cytoplasmic domain. Here, we show that a membrane proximal signal that directs the simian immunodeficiency virus (SIV) Env to clathrin‐coated pits, and is conserved in all SIV and human immunodeficiency virus Envs, conforms to a Yxxø motif (where x can be any amino acid and Ø represents a large hydrophobic residue). This motif is similar to that described for a number of cellular membrane proteins. By surface plasmon resonance we detected a high affinity interaction between peptides containing this membrane proximal signal and both AP1 and AP2 clathrin adaptor complexes. Mutation of the tyrosine in this membrane proximal motif in a SIV Env with a prematurely truncated cytoplasmic domain leads to a ≥25‐fold increase in Env expression on infected cells. By contrast, the same mutation in an Env with a full‐length cytoplasmic domain increases cell surface expression only 4‐fold. We show that this effect results from the presence of additional endocytosis signals in the full‐length cytoplasmic domain. Chimeras containing CD4 ecto‐ and membrane spanning domains and a full‐length SIV Env cytoplasmic domain showed rapid endocytosis even when the membrane proximal tyrosine‐based signal was disrupted. Mapping experiments indicated that at least some of the additional endocytosis information is located between residues 743 and 812 of Env from the SIVmac239 molecular clone. Together, our findings indicate that the cytoplasmic domain of SIV Env contains multiple endocytosis and/or trafficking signals that modulate its surface expression on infected cells, and suggest an important role for this function in pathogenesis.


Journal of Immunology | 2011

Dimethyl Fumarate, an Immune Modulator and Inducer of the Antioxidant Response, Suppresses HIV Replication and Macrophage-Mediated Neurotoxicity: A Novel Candidate for HIV Neuroprotection

Stephanie A. Cross; Denise R. Cook; Anthony W. S. Chi; Patricia J. Vance; Lorraine L. Kolson; Bethany J. Wong; Kelly L. Jordan-Sciutto; Dennis L. Kolson

Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.


Journal of Clinical Investigation | 2014

Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders

Alexander J. Gill; Colleen E. Kovacsics; Stephanie A. Cross; Patricia J. Vance; Lorraine L. Kolson; Kelly L. Jordan-Sciutto; Benjamin B. Gelman; Dennis L. Kolson

Heme oxygenase-1 (HO-1) is an inducible, detoxifying enzyme that is critical for limiting oxidative stress, inflammation, and cellular injury within the CNS and other tissues. Here, we demonstrate a deficiency of HO-1 expression in the brains of HIV-infected individuals. This HO-1 deficiency correlated with cognitive dysfunction, HIV replication in the CNS, and neuroimmune activation. In vitro analysis of HO-1 expression in HIV-infected macrophages, a primary CNS HIV reservoir along with microglia, demonstrated a decrease in HO-1 as HIV replication increased. HO-1 deficiency correlated with increased culture supernatant glutamate and neurotoxicity, suggesting a link among HIV infection, macrophage HO-1 deficiency, and neurodegeneration. HO-1 siRNA knockdown and HO enzymatic inhibition in HIV-infected macrophages increased supernatant glutamate and neurotoxicity. In contrast, increasing HO-1 expression through siRNA derepression or with nonselective pharmacologic inducers, including the CNS-penetrating drug dimethyl fumarate (DMF), decreased supernatant glutamate and neurotoxicity. Furthermore, IFN-γ, which is increased in CNS HIV infection, reduced HO-1 expression in cultured human astrocytes and macrophages. These findings indicate that HO-1 is a protective host factor against HIV-mediated neurodegeneration and suggest that HO-1 deficiency contributes to this degeneration. Furthermore, these results suggest that HO-1 induction in the CNS of HIV-infected patients on antiretroviral therapy could potentially protect against neurodegeneration and associated cognitive dysfunction.


Journal of Virology | 2015

Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy

Alexander J. Gill; Colleen E. Kovacsics; Patricia J. Vance; Ronald G. Collman; Dennis L. Kolson

ABSTRACT Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. IMPORTANCE The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART.


Clinical and Vaccine Immunology | 2006

Simian Immunodeficiency Virus (SIV)/Immunoglobulin G Immune Complexes in SIV-Infected Macaques Block Detection of CD16 but Not Cytolytic Activity of Natural Killer Cells

Qing Wei; Jackie Stallworth; Patricia J. Vance; James A. Hoxie; Patricia N. Fultz

ABSTRACT Natural killer cells are components of the innate immune system that play an important role in eliminating viruses and malignant cells. Using simian immunodeficiency virus (SIV) infection of macaques as a model, flow cytometry revealed a gradual loss of CD16+ NK cell numbers that was associated with disease progression. Of note, the apparent loss of NK cells was detected in whole-blood samples but not in isolated peripheral blood mononuclear cells (PBMC), suggesting that an inhibitor(s) of the antibody used to detect CD16, the low-affinity immunoglobulin G (IgG) receptor, was present in blood but was removed during PBMC isolation. (Actual decreases in CD16+ cell numbers in PBMC generally were not detected until animals became lymphopenic.) The putative decrease in CD16+ cell numbers in whole blood correlated with increasing SIV-specific antibody titers and levels of plasma virion RNA. With the addition of increasing amounts of plasma from progressor, but not nonprogressor, macaques to PBMC from an uninfected animal, the apparent percentage of CD16+ cells and the mean fluorescence intensity of antibodies binding to CD16 declined proportionately. A similar decrease was observed with the addition of monomeric IgG (mIgG) and IgG immune complexes (IgG-ICs) purified from the inhibitory plasma samples; some of the ICs contained SIV p27gag antigen and/or virions. Of interest, addition of purified IgG/IgG-ICs to NK cell lytic assays did not inhibit killing of K562 cells. These results indicate that during progressive SIV and, by inference, human immunodeficiency virus disease, CD16+ NK cell numbers can be underestimated, or the cells not detected at all, when one is using a whole-blood fluorescence-activated cell sorter assay and a fluorochrome-labeled antibody that can be blocked by mIgG or IgG-ICs. Although this blocking had no apparent effect on NK cell activity in vitro, the in vivo effects are unknown.


Journal of Cell Biology | 1996

An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface.

M M Sauter; Annegret Pelchen-Matthews; Romke Bron; Mark Marsh; Celia C. LaBranche; Patricia J. Vance; Josephine Romano; Beth Haggarty; T K Hart; W. M. F. Lee; James A. Hoxie


Journal of Virology | 1995

A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells.

Celia C. LaBranche; M M Sauter; Beth Haggarty; Patricia J. Vance; Josephine Romano; T K Hart; P J Bugelski; Mark Marsh; James A. Hoxie


Molecular Biology of the Cell | 2006

A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein

Rahel Byland; Patricia J. Vance; James A. Hoxie; Mark Marsh

Collaboration


Dive into the Patricia J. Vance's collaboration.

Top Co-Authors

Avatar

James A. Hoxie

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mark Marsh

University College London

View shared research outputs
Top Co-Authors

Avatar

Beth Haggarty

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Josephine Romano

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Kolson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alexander J. Gill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge