Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia K. Nguyen is active.

Publication


Featured researches published by Patricia K. Nguyen.


Circulation | 2013

Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity

Ping Liang; Feng Lan; Andrew S. Lee; Tingyu Gong; Veronica Sanchez-Freire; Yongming Wang; Sebastian Diecke; Karim Sallam; Joshua W. Knowles; Paul J. Wang; Patricia K. Nguyen; Donald M. Bers; Robert C. Robbins; Joseph C. Wu

Background— Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. Methods and Results— Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell–derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go–related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. Conclusions— We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go–related gene test or healthy control hiPSC-CM/hESC-CM screening assays.


Jacc-cardiovascular Imaging | 2008

Effects of Age, Gender, Obesity, and Diabetes on the Efficacy and Safety of the Selective A2A Agonist Regadenoson Versus Adenosine in Myocardial Perfusion Imaging: Integrated ADVANCE-MPI Trial Results

Manuel D. Cerqueira; Patricia K. Nguyen; Peter Staehr; S. Richard Underwood; Ami E. Iskandrian

OBJECTIVES To compare the effects of age, gender, body mass index, and diabetes on the safety and efficacy of regadenoson stress myocardial perfusion imaging, and to assess the noninferiority of regadenoson to adenosine for the detection of reversible myocardial perfusion defects. BACKGROUND Previous reports have shown that a fixed unit bolus of regadenoson is safe and noninferior to adenosine for the detection of reversible perfusion defects by radionuclide imaging. METHODS Using a database of 2,015 patients, we evaluated the effects of age, gender, body mass index, and diabetes on the safety and efficacy of regadenoson compared to adenosine. RESULTS For detection of ischemia relative to adenosine, noninferiority was demonstrated for all patients (agreement rate difference 0%, 95% CI -6.2% to +6.8%). The average agreement rate between adenosine-adenosine and adenosine-regadenoson were 0.62 +/- 0.03 and 0.63 +/- 0.02. Detection of ischemia was also comparable in specific subgroups. Agreement was less for both agents in women versus men with moderate and large areas of ischemia. Compared to adenosine, regadenoson had a lower combined symptom score and less chest pain, flushing, and throat, neck, or jaw pain, but more headache and gastrointestinal discomfort. This was true in nearly all subgroups. Regadenoson patients reported feeling more comfortable (1.7 +/- .02 vs. 1.9 +/- 0.03, p < 0.001). Based on the overall tolerability score, women felt less comfortable than men with both stress agents. Image quality was rated good or excellent in 92% for both agents. CONCLUSIONS Regadenoson can be safely administered as a fixed unit bolus and is as efficacious as adenosine in detecting ischemia regardless of age, gender, body mass index, and diabetes. Regadenoson is better tolerated overall and across various subgroups.


Journal of Magnetic Resonance Imaging | 2006

Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths.

Vasily L. Yarnykh; Masahiro Terashima; Cecil E. Hayes; Ann Shimakawa; Norihide Takaya; Patricia K. Nguyen; Jean H. Brittain; Michael V. McConnell; Chun Yuan

To compare black‐blood multicontrast carotid imaging at 3T and 1.5T and assess compatibility between morphological measurements of carotid arteries at 1.5T and 3T.


Cell Stem Cell | 2014

Stem Cell Imaging: From Bench to Bedside

Patricia K. Nguyen; Johannes Riegler; Joseph C. Wu

Although cellular therapies hold great promise for the treatment of human disease, results from several initial clinical trials have not shown a level of efficacy required for their use as a first line therapy. Here we discuss how in vivo molecular imaging has helped identify barriers to clinical translation and potential strategies that may contribute to successful transplantation and improved outcomes, with a focus on cardiovascular and neurological diseases. We conclude with a perspective on the future role of molecular imaging in defining safety and efficacy for clinical implementation of stem cell therapies.


Circulation | 2011

Novel MicroRNA Prosurvival Cocktail for Improving Engraftment and Function of Cardiac Progenitor Cell Transplantation

Shijun Hu; Mei Huang; Patricia K. Nguyen; Yongquan Gong; Zongjin Li; Fangjun Jia; Feng Lan; Junwei Liu; Divya Nag; Robert C. Robbins; Joseph C. Wu

Background— Although stem cell therapy has provided a promising treatment for myocardial infarction, the low survival of the transplanted cells in the infarcted myocardium is possibly a primary reason for failure of long-term improvement. Therefore, the development of novel prosurvival strategies to boost stem cell survival will be of significant benefit to this field. Methods and Results— Cardiac progenitor cells (CPCs) were isolated from transgenic mice, which constitutively express firefly luciferase and green fluorescent protein. The CPCs were transduced with individual lentivirus carrying the precursor of miR-21, miR-24, and miR-221, a cocktail of these 3 microRNA precursors, or green fluorescent protein as a control. After challenge in serum free medium, CPCs treated with the 3 microRNA cocktail showed significantly higher viability compared with untreated CPCs. After intramuscular and intramyocardial injections, in vivo bioluminescence imaging showed that microRNA cocktail-treated CPCs survived significantly longer after transplantation. After left anterior descending artery ligation, microRNA cocktail-treated CPCs boost the therapeutic efficacy in terms of functional recovery. Histological analysis confirmed increased myocardial wall thickness and CPC engraftment in the myocardium with the microRNA cocktail. Finally, we used bioinformatics analysis and experimental validation assays to show that Bim, a critical apoptotic activator, is an important target gene of the microRNA cocktail, which collectively can bind to the 3′UTR region of Bim and suppress its expression. Conclusions— We have demonstrated that a microRNA prosurvival cocktail (miR-21, miR-24, and miR-221) can improve the engraftment of transplanted cardiac progenitor cells and therapeutic efficacy for treatment of ischemic heart disease.


Circulation Research | 2011

Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

Patricia K. Nguyen; Feng Lan; Yongming Wang; Joseph C. Wu

Stem cells have been touted as the holy grail of medical therapy, with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large-animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials.


Journal of Cardiovascular Magnetic Resonance | 2008

Quantitative characterization of myocardial infarction by cardiovascular magnetic resonance predicts future cardiovascular events in patients with ischemic cardiomyopathy.

Hajime Yokota; Shahriar Heidary; Chandra Katikireddy; Patricia K. Nguyen; John M. Pauly; Michael V. McConnell; Phillip C. Yang

BackgroundCardiovascular magnetic resonance (CMR) can provide quantitative data of the myocardial tissue utilizing high spatial and temporal resolution along with exquisite tissue contrast. Previous studies have correlated myocardial scar tissue with the occurrence of ventricular arrhythmia. This study was conducted to evaluate whether characterization of myocardial infarction by CMR can predict cardiovascular events in patients with ischemic cardiomyopathy (ICM).ResultsWe consecutively studied 86 patients with ICM (LVEF < 50%, mean LVEF: 26 ± 12%) with CMR before revascularization or medication therapy ± implantable cardiac defibrillator, determined the amount of myocardial scar, and followed for development of cardiovascular events. Thirty-three patients (38%) had cardiovascular events (mean follow-up: 20 ± 16 months). Patients who developed cardiovascular events had larger scar volume and scar percentage of the myocardium than those who did not develop cardiovascular events (16.8 ± 12.4 cm3 vs. 11.7 ± 12.6 cm3, p = 0.023 and 10.2 ± 6.9% vs. 7.2 ± 6.7%, p = 0.037, respectively). There were no significant differences in LVEDV, LVESV and LVEF between the patients with and without cardiovascular events (231 ± 76 ml vs. 230 ± 88 ml; 180 ± 73 ml vs. 175 ± 90 ml; and 25 ± 10% vs. 27 ± 13%, respectively).ConclusionQuantification of the scar volume and scar percentage by CMR is superior to LVEDV, LVESV, and LVEF in prognosticating the future likelihood of the development of cardiovascular events in patients with ICM.


Journal of Biological Chemistry | 2011

Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells

Andrew S. Lee; Dan Xu; Jordan R. Plews; Patricia K. Nguyen; Divya Nag; Jennifer Lyons; Leng Han; Shijun Hu; Feng Lan; Junwei Liu; Mei Huang; Kazim H. Narsinh; Long Ct; Patricia E. de Almeida; Benjamin Levi; Nigel G. Kooreman; Charles D. Bangs; Cholawat Pacharinsak; Fumiaki Ikeno; Alan C. Yeung; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.


Circulation | 2011

Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction.

Mei Huang; Patricia K. Nguyen; Fangjun Jia; Shijun Hu; Yongquan Gong; Patricia E. de Almeida; Wang L; Divya Nag; Mark A. Kay; Amato J. Giaccia; Robert C. Robbins; Joseph C. Wu

Background— Under normoxic conditions, hypoxia-inducible factor (HIF)-1&agr; is rapidly degraded by 2 hydroxylases: prolyl hydroxylase (PHD) and factor-inhibiting HIF-1 (FIH). Because HIF-1&agr; mediates the cardioprotective response to ischemic injury, its upregulation may be an effective therapeutic option for ischemic heart failure. Methods and Results— PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin (sh) sequences for inhibiting PHD isoenzyme 2 and FIH were inserted into novel, nonviral, minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit+ cardiac progenitor cells demonstrated higher expression of angiogenesis factors in the double-knockdown group compared with the single-knockdown and short hairpin scramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially after left anterior descending coronary artery ligation in adult FVB mice (n=60). Functional studies using MRI, echocardiography, and pressure-volume loops showed greater improvement in cardiac function in the double-knockdown group. To assess mechanisms of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double-knockdown group. Fluorescence-activated cell sorting showed significantly higher activation of endogenous c-kit+ cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser-capture microdissection analysis confirmed upregulation of HIF-1&agr; protein and angiogenesis genes, respectively. Conclusions— We demonstrated that HIF-1&agr; upregulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function.


Circulation Research | 2012

Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation

Mingxia Gu; Patricia K. Nguyen; Andrew S. Lee; Dan Xu; Shijun Hu; Jordan R. Plews; Leng Han; Bruno C. Huber; Won Hee Lee; Yongquan Gong; Patricia E. de Almeida; Jennifer Lyons; Fumi Ikeno; Cholawat Pacharinsak; Andrew J. Connolly; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Rationale: Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models. Objective: To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia. Methods and Results: Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery. Conclusions: In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.

Collaboration


Dive into the Patricia K. Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leng Han

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge