Patricia L. Allen
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia L. Allen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
James W. Wilson; C. M. Ott; K. Höner zu Bentrup; Rajee Ramamurthy; L. Quick; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; D. Fernandez; Emily Richter; Miti Shah; Michelle Kilcoyne; Lokesh Joshi; Mayra Nelman-Gonzalez; S. Hing; Macarena Parra; P. Dumars; Kelly Norwood; R. Bober; J. Devich; A. Ruggles; Carla Goulart; Mark Rupert; Louis S. Stodieck; P. Stafford; L. Catella; Michael J. Schurr
A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.
Proceedings of the National Academy of Sciences of the United States of America | 2002
James W. Wilson; Rajee Ramamurthy; Steffen Porwollik; Michael McClelland; Timothy G. Hammond; Patricia L. Allen; C. Mark Ott; Duane L. Pierson; Cheryl A. Nickerson
The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 × g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.
American Journal of Physiology-renal Physiology | 1999
John D. Imig; Gabriel L. Navar; Li-Xian Zou; Katie C. O’Reilly; Patricia L. Allen; James H. Kaysen; Timothy G. Hammond; L. Gabriel Navar
Kidney cortex and proximal tubular angiotensin II (ANG II) levels are greater than can be explained on the basis of circulating ANG II, suggesting intrarenal compartmentalization of these peptides. One possible site of intracellular accumulation is the endosomes. In the present study, we tested for endosomal ANG I, ANG II, angiotensin type 1A receptor (AT(1A)), and angiotensin converting enzyme (ACE) activity and determined whether these levels are regulated by salt intake. Male Sprague-Dawley rats were fed chow containing either high or low dietary sodium for 10-14 days. Blood and kidneys were harvested and processed for measurement of plasma, kidney, and renal intermicrovillar cleft and endosomal angiotensin levels. Kidney ANG I averaged 179 +/- 20 fmol/g and ANG II averaged 258 +/- 36 fmol/g in rats fed a high-sodium diet and were significantly higher, averaging 347 +/- 58 fmol/g and 386 +/- 55 fmol/g, respectively, in rats fed a low-salt diet. Renal intermicrovillar clefts and endosomes contained ANG I and ANG II. Intermicrovillar cleft ANG I and ANG II levels averaged 8.4 +/- 2.6 and 74 +/- 26 fmol/mg, respectively, in rats fed a high-salt diet and 7.6 +/- 1.7 and 70 +/- 25 fmol/mg in rats fed a low-salt diet. Endosomal ANG I and ANG II levels averaged 12.3 +/- 4.4 and 43 +/- 19 fmol/mg, respectively, in rats fed a high-salt diet, and these levels were similar to those observed in rats fed a low-salt diet. Renal endosomes from rats fed a low-salt diet demonstrated significantly more AT(1A) receptor binding compared with rats fed a high-salt diet. ACE activity was detectable in renal intermicrovillar clefts and was 2.5-fold higher than the levels observed in renal endosomes. Acute enalaprilat treatment decreased ACE activity in renal intermicrovillar clefts by 90% and in renal endosomes by 84%. Likewise, intermicrovillar cleft and endosomal ANG II levels decreased by 61% and 52%, respectively, in enalaprilat-treated animals. These data demonstrate the presence of intact angiotensin peptides and ACE activity in renal intermicrovillar clefts and endosomes, indicating that intact angiotensin peptides are formed and/or trafficked through intracellular endosomal compartments and are dependent on ACE activity.Kidney cortex and proximal tubular angiotensin II (ANG II) levels are greater than can be explained on the basis of circulating ANG II, suggesting intrarenal compartmentalization of these peptides. One possible site of intracellular accumulation is the endosomes. In the present study, we tested for endosomal ANG I, ANG II, angiotensin type 1A receptor (AT1A), and angiotensin converting enzyme (ACE) activity and determined whether these levels are regulated by salt intake. Male Sprague-Dawley rats were fed chow containing either high or low dietary sodium for 10-14 days. Blood and kidneys were harvested and processed for measurement of plasma, kidney, and renal intermicrovillar cleft and endosomal angiotensin levels. Kidney ANG I averaged 179 ± 20 fmol/g and ANG II averaged 258 ± 36 fmol/g in rats fed a high-sodium diet and were significantly higher, averaging 347 ± 58 fmol/g and 386 ± 55 fmol/g, respectively, in rats fed a low-salt diet. Renal intermicrovillar clefts and endosomes contained ANG I and ANG II. Intermicrovillar cleft ANG I and ANG II levels averaged 8.4 ± 2.6 and 74 ± 26 fmol/mg, respectively, in rats fed a high-salt diet and 7.6 ± 1.7 and 70 ± 25 fmol/mg in rats fed a low-salt diet. Endosomal ANG I and ANG II levels averaged 12.3 ± 4.4 and 43 ± 19 fmol/mg, respectively, in rats fed a high-salt diet, and these levels were similar to those observed in rats fed a low-salt diet. Renal endosomes from rats fed a low-salt diet demonstrated significantly more AT1A receptor binding compared with rats fed a high-salt diet. ACE activity was detectable in renal intermicrovillar clefts and was 2.5-fold higher than the levels observed in renal endosomes. Acute enalaprilat treatment decreased ACE activity in renal intermicrovillar clefts by 90% and in renal endosomes by 84%. Likewise, intermicrovillar cleft and endosomal ANG II levels decreased by 61% and 52%, respectively, in enalaprilat-treated animals. These data demonstrate the presence of intact angiotensin peptides and ACE activity in renal intermicrovillar clefts and endosomes, indicating that intact angiotensin peptides are formed and/or trafficked through intracellular endosomal compartments and are dependent on ACE activity.
European Journal of Pharmacology | 2003
Branko Braam; Patricia L. Allen; Ed Benes; Hein A. Koomans; L. Gabriel Navar; Timothy G. Hammond
Angiotensin II has been shown to exert complex effects on proximal tubular cell function and growth. To assess some of the direct effects on proximal tubular cells, changes in gene expression of selected cellular pathways were determined after exposure to angiotensin II. We used DNA microarrays to analyze multiple gene expression responses to increasing angiotensin II concentrations. Human proximal tubular cells were grown in flasks, and the presence of angiotensin type 1 receptor was confirmed by Western blot analysis. At passages 4-6, these cells were exposed to angiotensin II and harvested 4 h later and mRNA of the cells was extracted; 2 microg of mRNA was fluorescently conjugated for cDNA microarray hybridization. A custom-made DNA microarray was designed by selecting 300 human genes from 10 different functional systems and amplifying clones using polymerase chain reaction. Cells were subjected to 10 and 100 nM angiotensin II with paired untreated cells as controls. RNA was isolated, reverse transcribed, labeled and hybridized to the arrays and the ratios calculated. Ratios of > or =2.0 and < or =0.5 were considered significant. Coordinated changes were observed in genes of the hepatocyte nuclear factor 3 family (NHF3; HNF3A, HNF3B and HNF3G), in the E2F genes (E2F1, E2F3) and the interferon regulatory factors IRF1 and IRF5. Induction of the expression of transcription factors points towards complex regulation of gene expression upon angiotensin II exposure. Three genes involved in the dampening of oxidative stress were enhanced. Taken together, brief exposure of human tubular epithelial cells to angiotensin II elicited a marked induction of nuclear factors, antioxidant genes and hormones and hormone receptor genes. The quick activation of transcription factors by angiotensin II indicates that angiotensin II can directly initiate a cascade of expressional events in proximal tubular cells.
Astrobiology | 2013
Timothy G. Hammond; Louis S. Stodieck; Holly H. Birdsall; Jeanne L. Becker; Paul Koenig; Jeffrey S. Hammond; Margaret A. Gunter; Patricia L. Allen
To evaluate effects of microgravity on virulence, we studied the ability of four common clinical pathogens--Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and Candida albicans--to kill wild type Caenorhabditis elegans (C. elegans) nematodes at the larval and adult stages. Simultaneous studies were performed utilizing spaceflight, clinorotation in a 2-D clinorotation device, and static ground controls. The feeding rate of worms for killed E. coli was unaffected by spaceflight or clinorotation. Nematodes, microbes, and growth media were separated until exposed to true or modeled microgravity, then mixed and grown for 48 h. Experiments were terminated by paraformaldehyde fixation, and optical density measurements were used to assay residual microorganisms. Spaceflight was associated with reduced virulence for Listeria, Enterococcus, MRSA, and Candida for both larval and adult C. elegans. These are the first data acquired with a direct in vivo assay system in space to demonstrate virulence. Clinorotation reproduced the effects of spaceflight in some, but not all, virulence assays: Candida and Enterococcus were less virulent for larval worms but not adult worms, whereas virulence of MRSA and Listeria were unaffected by clinorotation in tests with both adult and larval worms. We conclude that four common clinical microorganisms are all less virulent in space.
Astrobiology | 2008
Chasity B. Coleman; Patricia L. Allen; Mark Rupert; Carla Goulart; Alex Hoehn; Louis S. Stodieck; Timothy G. Hammond
This study identifies transcriptional regulation of stress response element (STRE) genes in space in the model eukaryotic organism, Saccharomyces cerevisiae. To determine transcription-factor dependence, gene expression changes in space were examined in strains bearing green fluorescent protein-tagged (GFP-tagged) reporters for YIL052C (Sfp1 dependent with stress), YST-2 (Sfp1/Rap1 dependent with stress), or SSA4 (Msn4 dependent with stress), along with strains of SSA4-GFP and YIL052C-GFP with individual deletions of the Msn4 or Sfp1. When compared to parallel ground controls, spaceflight induces significant gene expression changes in SSA4 (35% decrease) and YIL052C (45% decrease), while expression of YST-2 (0.08% decrease) did not change. In space, deletion of Sfp1 reversed the SSA4 gene expression effect (0.00% change), but Msn4 deletion yielded a similar decrease in SSA4 expression (34% change), which indicates that SSA4 gene expression is dependent on the Sfp1 transcription factor in space, unlike other stresses. For YIL052C, deletion of Sfp1 reversed the effect (0.01% change), and the Msn4 deletion maintained the decrease in expression (30% change), which indicates that expression of YIL052C is also dependent on Sfp1 in space. Spaceflight has selective and specific effects on SSA4 and YIL052C gene expression, indicated by novel dependence on Sfp1.
Applied Microbiology and Biotechnology | 2005
Riccardo D'Elia; Patricia L. Allen; Kelly Johanson; Cheryl A. Nickerson; Timothy G. Hammond
This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which >70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.
BioMed Research International | 2015
Corey Nislow; Anna Y. Lee; Patricia L. Allen; Guri Giaever; Andrew Paul Smith; Marinella Gebbia; Louis S. Stodieck; Jeffrey S. Hammond; Holly H. Birdsall; Timothy G. Hammond
Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion collection to provide a quantitative assessment of the effects of microgravity on a model organism. We developed robust hardware to screen, in parallel, the complete collection of ~4800 homozygous and ~5900 heterozygous (including ~1100 single-copy deletions of essential genes) yeast deletion strains, each carrying unique DNA that acts as strain identifiers. We compared strain fitness for the homozygous and heterozygous yeast deletion collections grown in spaceflight and ground, as well as plus and minus hyperosmolar sodium chloride, providing a second additive stressor. The genome-wide sensitivity profiles obtained from these treatments were then queried for their similarity to a compendium of drugs whose effects on the yeast collection have been previously reported. We found that the effects of spaceflight have high concordance with the effects of DNA-damaging agents and changes in redox state, suggesting mechanisms by which spaceflight may negatively affect cell fitness.
Microgravity Science and Technology | 2018
Timothy G. Hammond; Patricia L. Allen; Margaret A. Gunter; Jennifer Chiang; Guri Giaever; Corey Nislow; Holly H. Birdsall
Baker’s yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or ‘giant’ colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.
Physiological Genomics | 2000
Timothy G. Hammond; Edmund Benes; K. C. O’Reilly; D.A. Wolf; R. M. Linnehan; A. Taher; J.H. Kaysen; Patricia L. Allen; T.J. Goodwin