Patricia M. Graves
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia M. Graves.
Malaria Journal | 2010
Daddi Jima; Asefaw Getachew; Hana Bilak; Richard W. Steketee; Paul M. Emerson; Patricia M. Graves; Teshome Gebre; Richard Reithinger; Jimee Hwang
BackgroundIn 2005, a nationwide survey estimated that 6.5% of households in Ethiopia owned an insecticide-treated net (ITN), 17% of households had been sprayed with insecticide, and 4% of children under five years of age with a fever were taking an anti-malarial drug. Similar to other sub-Saharan African countries scaling-up malaria interventions, the Government of Ethiopia set an ambitious national goal in 2005 to (i) provide 100% ITN coverage in malarious areas, with a mean of two ITNs per household; (ii) to scale-up indoor residual spraying of households with insecticide (IRS) to cover 30% of households targeted for IRS; and (iii) scale-up the provision of case management with rapid diagnostic tests (RDTs) and artemisinin-based combination therapy (ACT), particularly at the peripheral level.MethodsA nationally representative malaria indicator survey (MIS) was conducted in Ethiopia between September and December 2007 to determine parasite and anaemia prevalence in the population at risk and to assess coverage, use and access to scaled-up malaria prevention and control interventions. The survey used a two-stage random cluster sample of 7,621 households in 319 census enumeration areas. A total of 32,380 people participated in the survey. Data was collected using standardized Roll Back Malaria Monitoring and Evaluation Reference Group MIS household and womens questionnaires, which were adapted to the local context.ResultsData presented is for households in malarious areas, which according to the Ethiopian Federal Ministry of Health are defined as being located <2,000 m altitude. Of 5,083 surveyed households, 3,282 (65.6%) owned at least one ITN. In ITN-owning households, 53.2% of all persons had slept under an ITN the prior night, including 1,564/2,496 (60.1%) children <5 years of age, 1,891/3,009 (60.9%) of women 15 - 49 years of age, and 166/266 (65.7%) of pregnant women. Overall, 906 (20.0%) households reported to have had IRS in the past 12 months. Of 747 children with reported fever in the two weeks preceding the survey, 131 (16.3%) sought medical attention within 24 hours. Of those with fever, 86 (11.9%) took an anti-malarial drug and 41 (4.7%) took it within 24 hours of fever onset. Among 7,167 surveyed individuals of all ages, parasitaemia as estimated by microscopy was 1.0% (95% CI 0.5 - 1.5), with 0.7% and 0.3% due to Plasmodium falciparum and Plasmodium vivax, respectively. Moderate-severe anaemia (haemoglobin <8 g/dl) was observed in 239/3,366 (6.6%, 95% CI 4.9-8.3) children <5 years of age.ConclusionsSince mid-2005, the Ethiopian National Malaria Control Programme has considerably scaled-up its malaria prevention and control interventions, demonstrating the impact of strong political will and a committed partnership. The MIS showed, however, that besides sustaining and expanding malaria intervention coverage, efforts will have to be made to increase intervention access and use. With ongoing efforts to sustain and expand malaria intervention coverage, to increase intervention access and use, and with strong involvement of the community, Ethiopia expects to achieve its targets in terms of coverage and uptake of interventions in the coming years and move towards eliminating malaria.
PLOS ONE | 2012
Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher
Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.
Transactions of The Royal Society of Tropical Medicine and Hygiene | 2009
Patricia M. Graves; Frank O. Richards; Jeremiah Ngondi; Paul M. Emerson; Estifanos Biru Shargie; Tekola Endeshaw; Pietro Ceccato; Yeshewamebrat Ejigsemahu; Aryc W. Mosher; Afework Hailemariam; Mulat Zerihun; Tesfaye Teferi; Berhan Ayele; Ayenew Mesele; Gideon Yohannes; Abate Tilahun; Teshome Gebre
We assessed malaria infection in relation to age, altitude, rainfall, socio-economic factors and coverage of control measures in a representative sample of 11437 people in Amhara, Oromia and SNNP regions of Ethiopia in December 2006-January 2007. Surveys were conducted in 224 randomly selected clusters of 25 households (overall sample of 27884 people in 5708 households). In 11538 blood slides examined from alternate households (83% of those eligible), malaria prevalence in people of all ages was 4.1% (95% CI 3.4-4.9), with 56.5% of infections being Plasmodium falciparum. At least one mosquito net or one long-lasting insecticidal net (LLIN) was present in 37.0% (95% CI 31.1-43.3) and 19.6% (95% CI 15.5-24.5) of households, respectively. In multivariate analysis (n=11437; 82% of those eligible), significant protective factors were: number of LLINs per household (odds ratio [OR] (per additional net)=0.60; 95% CI 0.40-0.89), living at higher altitude (OR (per 100 m)=0.95; 95% CI 0.90-1.00) and household wealth (OR (per unit increase in asset index)=0.79; 95% CI 0.66-0.94). Malaria prevalence was positively associated with peak monthly rainfall in the year before the survey (OR (per additional 10 mm rain)=1.10; 95% CI 1.03-1.18). People living above 2000 m and people of all ages are still at significant risk of malaria infection.
PLOS Neglected Tropical Diseases | 2008
Paul M. Emerson; Jeremiah Ngondi; Estifanos Biru; Patricia M. Graves; Yeshewamebrat Ejigsemahu; Teshome Gebre; Tekola Endeshaw; Aryc W. Mosher; Mulat Zerihun; Ayennew Messele; Frank O. Richards
Background Amhara Regional State of Ethiopia has a population of approximately 19.6 million, is prone to unstable and epidemic malaria, and is severely affected by trachoma. An integrated malaria and trachoma control program is being implemented by the Regional Health Bureau. To provide baseline data, a survey was conducted during December 2006 to estimate malaria parasite prevalence, malaria indicators, prevalence of trachoma, and trachoma risk factors in households and people of all ages in each of the ten zones of the state, excluding three urban centers (0.4% of the population). Methodology/Principal Findings The study was designed to provide prevalence estimates at zone and state levels. Using multi-stage cluster random sampling, 16 clusters of 25 households were randomly selected in each of the ten zones. Household heads were interviewed for malaria indicators and trachoma risk factors (N = 4,101). All people were examined for trachoma signs (N = 17,242), and those in even-numbered households provided blood films for malaria parasite detection (N = 7,745); both thick and thin blood films were read. Zonal malaria parasite prevalence ranged from 2.4% to 6.1%, with the overall state-wide prevalence being 4.6% (95% confidence interval (CI): 3.8%–5.6%). The Plasmodium falciparum: Plasmodium vivax ratio ranged from 0.9–2.1 with an overall regional ratio of 1.2. A total of 14.8% of households reported indoor residual spraying in the past year, 34.7% had at least one mosquito net, and 16.1% had one or more long-lasting insecticidal net. Zonal trachoma prevalence (trachomatous inflammation follicular [WHO grade TF] in children aged 1–9 years) ranged from 12.6% to 60.1%, with the overall state-wide prevalence being 32.7% (95% CI: 29.2%–36.5%). State-wide prevalence of trachomatous trichiasis (TT) in persons aged over fifteen was 6.2% (95% CI: 5.3–7.4), and 0.3% (95% CI: 0.2–0.5) in children aged 0–14 years. Overall, an estimated 643,904 persons (lower bound 419,274, upper bound 975,635) have TT and require immediate corrective surgery. Conclusions/Significance The results provide extensive baseline data to guide planning, implementation, and evaluation of the integrated malaria and trachoma control program in Amhara. The success of the integrated survey is the first step towards demonstration that control of priority neglected tropical diseases can be integrated with one of the “big three” killer diseases.
Tropical Medicine & International Health | 2008
Patricia M. Graves; Daniel E. Osgood; Madeleine C. Thomson; Kiros Sereke; Afwerki Araia; Mehari Zerom; Pietro Ceccato; Michael Bell; John del Corral; Shashu Ghebreselassie; Eugene Brantly; Tewolde Ghebremeskel
Objective To assess the effectiveness of impregnated mosquito nets, indoor residual spraying and larval control relative to the impacts of climate variability in the decline of malaria cases in Eritrea.
Malaria Journal | 2011
Patricia M. Graves; Jeremiah Ngondi; Jimee Hwang; Asefaw Getachew; Teshome Gebre; Aryc W. Mosher; Amy E. Patterson; Estifanos Biru Shargie; Zerihun Tadesse; Adam Wolkon; Richard Reithinger; Paul M. Emerson; Frank O. Richards
BackgroundOwnership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use.MethodsGeneralized linear latent and mixed models (GLLAMM) were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS) in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy); net factors (condition, age, net density); household factors (number of rooms [2006] or sleeping spaces [2007], IRS, womens knowledge and school attendance [2007 only], wealth, altitude); and cluster level factors (rural or urban) were investigated in univariate and multi-variable models for each survey.ResultsIn 2006, increased net use was associated with: age 25-49 years (adjusted (a) OR = 1.4, 95% confidence interval (CI) 1.2-1.7) compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5); fewer nets with holes (Ptrend = 0.002); and increasing net density (Ptrend < 0.001). Reduced net use was associated with: age 5-24 years (aOR = 0.2; 95% CI 0.2-0.3). In 2007, increased net use was associated with: female gender (aOR = 1.3; 95% CI 1.1-1.6); fewer nets with holes (aOR [all nets in HH good] = 1.6; 95% CI 1.2-2.1); increasing net density (Ptrend < 0.001); increased womens malaria knowledge (Ptrend < 0.001); and urban clusters (aOR = 2.5; 95% CI 1.5-4.1). Reduced net use was associated with: age 5-24 years (aOR = 0.3; 95% CI 0.2-0.4); number of sleeping spaces (aOR [per additional space] = 0.6, 95% CI 0.5-0.7); more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7); and increasing household altitude (Ptrend < 0.001).ConclusionIn both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density), and improving net condition while focusing on education and promotion of net use, especially in school-age children and young adults in rural areas, are crucial areas for intervention to ensure maximum net use and consequent reduction of malaria transmission.
BMC Public Health | 2008
Estifanos Biru Shargie; Teshome Gebre; Jeremiah Ngondi; Patricia M. Graves; Aryc W. Mosher; Paul M. Emerson; Yeshewamebrat Ejigsemahu; Tekola Endeshaw; Dereje Olana; Asrat WeldeMeskel; Admas Teferra; Zerihun Tadesse; Abate Tilahun; Gedeon Yohannes; Frank O. Richards
BackgroundMalaria transmission in Ethiopia is unstable and seasonal, with the majority of the countrys population living in malaria-prone areas. Results from DHS 2005 indicate that the coverage of key malaria interventions was low. The government of Ethiopia has set the national goal of full population coverage with a mean of 2 long-lasting insecticidal nets (LLINs) per household through distribution of about 20 million LLIN by the end of 2007. The aim of this study was to generate baseline information on malaria parasite prevalence and coverage of key malaria control interventions in Oromia and SNNPR and to relate the prevalence survey findings to routine surveillance data just before further mass distribution of LLINs.MethodsA 64 cluster malaria survey was conducted in January 2007 using a multi-stage cluster random sampling design. Using Malaria Indicator Survey Household Questionnaire modified for the local conditions as well as peripheral blood microscopy and rapid diagnostic tests, the survey assessed net ownership and use and malaria parasite prevalence in Oromia and SNNPR regions of Ethiopia. Routine surveillance data on malaria for the survey time period was obtained for comparison with prevalence survey results.ResultsOverall, 47.5% (95% confidence interval (CI) 33.5–61.9%) of households had at least one net, and 35.1% (95% CI 23.1–49.4%) had at least one LLIN. There was no difference in net ownership or net utilization between the regions. Malaria parasite prevalence was 2.4% (95% CI 1.6–3.5%) overall, but differed markedly between the two regions: Oromia, 0.9% (95% CI 0.5–1.6); SNNPR, 5.4% (95% CI 3.4–8.5), p < 0.001. This difference between the two regions was also reflected in the routine surveillance data.ConclusionHousehold net ownership exhibited nearly ten-fold increase compared to the results of Demographic and Health Survey 2005 when fewer than 5% of households in these two regions owned any nets. The results of the survey as well as the routine surveillance data demonstrated that malaria continues to be a significant public health challenge in these regions–and more prevalent in SNNPR than in Oromia.
PLOS Neglected Tropical Diseases | 2014
Colleen L. Lau; Kimberly Y. Won; Luke Becker; Ricardo J. Soares Magalhaes; Saipale Fuimaono; Wayne Melrose; Patrick J. Lammie; Patricia M. Graves
Background As part of the Global Programme to Eliminate Lymphatic Filariasis (LF), American Samoa conducted mass drug administration (MDA) from 2000–2006, and passed transmission assessment surveys in 2011–2012. We examined the seroprevalence and spatial epidemiology of LF post-MDA to inform strategies for ongoing surveillance and to reduce resurgence risk. Methods ELISA for LF antigen (Og4C3) and antibodies (Wb123, Bm14) were performed on a geo-referenced serum bank of 807 adults collected in 2010. Risk factors assessed for association with sero-positivity included age, sex, years lived in American Samoa, and occupation. Geographic clustering of serological indicators was investigated to identify spatial dependence and household-level clustering. Results Og4C3 antigen of >128 units (positive) were found in 0.75% (95% CI 0.3–1.6%) of participants, and >32 units (equivocal plus positive) in 3.2% (95% CI 0.6–4.7%). Seroprevalence of Wb123 and Bm14 antibodies were 8.1% (95% CI 6.3–10.2%) and 17.9% (95% CI 15.3–20.7%) respectively. Antigen-positive individuals were identified in all ages, and antibody prevalence higher in older ages. Prevalence was higher in males, and inversely associated with years lived in American Samoa. Spatial distribution of individuals varied significantly with positive and equivocal levels of Og4C3 antigen, but not with antibodies. Using Og4C3 cutoff points of >128 units and >32 units, average cluster sizes were 1,242 m and 1,498 m, and geographical proximity of households explained 85% and 62% of the spatial variation respectively. Conclusions High-risk populations for LF in American Samoa include adult males and recent migrants. We identified locations and estimated the size of possible residual foci of antigen-positive adults, demonstrating the value of spatial analysis in post-MDA surveillance. Strategies to monitor cluster residents and high-risk groups are needed to reduce resurgence risk. Further research is required to quantify factors contributing to LF transmission at the last stages of elimination to ensure that programme achievements are sustained.
Archive | 2015
Salim Abdulla; Fred Binka; Patricia M. Graves; Brian Greenwood; Rose Leke; Elfatih M Malik; Kevin Marsh; Sylvia Meek; Kamini N. Mendis; Allan Schapira; Laurence Slutsker; Marcel Tanner; Neena Valecha; Nicholas J. White; Pedro L. Alonso; Andrea Bosman; Richard Cibulskis; Bianca D'Souza; Abraham Mnzava; Edith Patouillard; John C. Reeder; Pascal Ringwald; Erin Shutes; Chansuda Wongsrichanalai
The Malaria Policy Advisory Committee to the World Health Organization held its sixth meeting in Geneva, Switzerland from 10 to 12 September 2014. This article provides a summary of the discussions, conclusions and recommendations from that meeting.Meeting sessions covered the following: an update on drug resistance and containment including an assessment on the feasibility of elimination of Plasmodium falciparum malaria in the Greater Mekong Subregion; guidance on the control of residual malaria transmission by behaviourally resistant vectors; progress on the implementation of the Global Plan for Insecticide Resistance Management; updates on the Global Technical Strategy, Global Malaria Action Plan and the Plasmodium vivax technical brief; gaps in current World Health Organization Global Malaria Programme guidance for acceleration to elimination; surveillance, monitoring and evaluation; the updated World Health Organization Guidelines for the Prevention and Treatment of Malaria; Round 5 product testing for rapid diagnostic tests; and Intermittent Preventive Treatment for infants.Policy statements, position statements, and guidelines that arise from the Malaria Policy Advisory Committee meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme.The Malaria Policy Advisory Committee to the World Health Organization held its sixth meeting in Geneva, Switzerland from 10 to 12 September 2014. This article provides a summary of the discussions, conclusions and recommendations from that meeting. Meeting sessions covered the following: an update on drug resistance and containment including an assessment on the feasibility of elimination of Plasmodium falciparum malaria in the Greater Mekong Subregion; guidance on the control of residual malaria transmission by behaviourally resistant vectors; progress on the implementation of the Global Plan for Insecticide Resistance Management; updates on the Global Technical Strategy, Global Malaria Action Plan and the Plasmodium vivax technical brief; gaps in current World Health Organization Global Malaria Programme guidance for acceleration to elimination; surveillance, monitoring and evaluation; the updated World Health Organization Guidelines for the Prevention and Treatment of Malaria; Round 5 product testing for rapid diagnostic tests; and Intermittent Preventive Treatment for infants. Policy statements, position statements, and guidelines that arise from the Malaria Policy Advisory Committee meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme.
Transactions of The Royal Society of Tropical Medicine and Hygiene | 2008
Jeremiah Ngondi; Teshome Gebre; Estifanos Biru Shargie; Patricia M. Graves; Yeshewamebrat Ejigsemahu; Tesfaye Teferi; Aryc W. Mosher; Tekola Endeshaw; Mulat Zerihun; Ayenew Messele; Frank O. Richards; Paul M. Emerson
Identification of risk factors is essential for planning and implementing effective trachoma control programmes. We aimed to investigate risk factors for active trachoma and trichiasis in Amhara Regional State, Ethiopia. A survey was undertaken and eligible participants (children aged 1-9 years and adults aged 15 years and above) examined for trachoma. Risk factors were assessed through interviews and observations. Using ordinal logistic regression, associations between signs of active trachoma in children and potential risk factors were explored. Associations between trichiasis in adults and potential risk factors were investigated using conventional logistic regression. A total of 5427 children from 2845 households and 9098 adults from 4039 households were included in the analysis. Ocular discharge [odds ratio (OR)=5.9; 95% CI 4.8-7.2], nasal discharge (OR=1.6; 95% CI 1.3-1.9), thatch roof in household (OR=1.3; 95% CI 1.0-1.5), no electricity in household (OR=2.4; 95% CI 1.3-4.3) and increasing altitude (Ptrend<0.001) were independently associated with severity of active trachoma. Trichiasis was associated with increasing age (ORper 5 year increase=1.5; 95% CI 1.4-1.7), female gender (OR=4.5; 95% CI 3.5-5.8), increasing prevalence of active trachoma in children (Ptrend=0.003) and increasing altitude (Ptrend=0.015).