Patricia Marín-García
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia Marín-García.
Nature Protocols | 2009
Azar Radfar; Darío Méndez; Carlos Moneriz; María Linares; Patricia Marín-García; Antonio Puyet; Amalia Diez; José M. Bautista
This protocol describes a method for preparing cultures of Plasmodium falciparum synchronized at any intraerythrocytic stage. Using this method, around 60% parasitized cells may be obtained. On the basis of Trager and Jensens original continuous culture method, our approach relies on the use of fresh human blood not older than 2 weeks, a low hematocrit between 0.8 and 1.5%, a starting frozen inoculum of 10% ring-stage parasitemia, human serum replaced with AlbuMAX I and alternating sorbitol and Percoll synchronization methods to shorten the cycle window to 4–6 h and reduce sorbitol toxicity. From our synchronized high parasite density cultures, 3–5 ml of infected red blood cells can be obtained in 1 week, corresponding to 1.2 mg of total parasite protein per ml of harvested culture. On the basis of the variables parasitemia and packed cell volume, we provide an equation to accurately calculate the amount of complete medium required every 24 h corrected for the cycle stage and capacity of the culture flask. Ten days suffice to complete the protocol from a frozen stock of parasites.
FEBS Letters | 2005
Jesús Sánchez-Nogueiro; Patricia Marín-García; M. Teresa Miras-Portugal
The presence of ionotropic P2X7 receptor has been studied in mice brain from wild type and P2X7 receptor knockout animals. Western blot and immunocytochemical assays show the presence of a protein containing the P2X7 immunogenic epitopes in the brain of knockout model. Reverse transcriptase polymerase chain reaction experiments demonstrate the absence of the disrupted sequence, but other sequences of P2X7 specific mRNA expression have been detected. Functional calcium imaging experiments in cultured granule neurons from P2X7 knockout cerebella show the existence of a functional P2X7‐like receptor that keeps some of the properties of the genuine receptor.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Eva Maria Novoa; Noelia Camacho; Anna Tor; Barrie Wilkinson; Steven James Moss; Patricia Marín-García; Isabel G. Azcárate; José M. Bautista; Adam C. Mirando; Christopher S. Francklyn; Sonia Varón; Miriam Royo; Alfred Cortés; Lluís Ribas de Pouplana
Significance Malaria remains one of the main health threats in the developing world, with staggering social and economic costs. Resistance to artemisins, the main pharmacological tool currently available against malaria, has been widely reported. Borrelidin, a natural compound that inhibits threonyl-tRNA synthetase, has long been studied for its antibacterial and antiparasitic properties, but undesirable toxic effects prevented its further clinical development. Here we present a group of borrelidin derivatives that retain their ability to inhibit Plasmodium threonyl-tRNA synthetase but not its human homolog. Furthermore, we demonstrate, for the first time to our knowledge, that these compounds are capable of effectively clearing a Plasmodium infection in animals, curing malaria with a potency equivalent to reference drugs such as chloroquine. Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo.
British Journal of Pharmacology | 2013
Isabel G. Azcárate; Patricia Marín-García; Noelia Camacho; S Pérez-Benavente; Antonio Puyet; Amalia Diez; L. Ribas de Pouplana; José M. Bautista
Blood‐stage Plasmodium parasites cause morbidity and mortality from malaria. Parasite resistance to drugs makes development of new chemotherapies an urgency. Aminoacyl‐tRNA synthetases have been validated as antimalarial drug targets. We explored long‐term effects of borrelidin and mupirocin in lethal P. yoelii murine malaria.
Journal of Proteome Research | 2011
María Linares; Patricia Marín-García; Darío Méndez; Puyet Antonio; Amalia Diez; José M. Bautista
Oxidative stress plays a critical role in the pathogenesis of a number of diseases. The carbonyl end products of protein oxidation are among the most commonly measured markers of oxidation in biological samples. Protein carbonyl functional groups may be derivatized with 2,4-dinitrophenylhydrazine (DNPH) to render a stable 2,4-dinitrophenylhydrazone-protein (DNP-protein) and the carbonyl contents of individual proteins then determined by two-dimensional electrophoresis followed by immunoblotting using specific anti-DNP antibodies. Unfortunately, derivatization of proteins with DNPH could affect their mass spectrometry (MS) identification. This problem can be overcome using nontreated samples for protein identification. Nevertheless, derivatization could also affect their mobility, which might be solved by performing the derivatization step after the initial electrophoresis. Here, we compare two-dimensional redox proteome maps of mouse cerebellum acquired by performing the DNPH derivatization step before or after electrophoresis and detect differences in protein patterns. When the same approach is used for protein detection and identification, both methods were found to be useful to identify carbonylated proteins. However, whereas pre-DNPH derivatized proteins were successfully analyzed, high background staining complicated the analysis when the DNPH reaction was performed after transblotting. Comparative data on protein identification using both methods are provided.
Malaria Journal | 2011
Carlos Moneriz; Patricia Marín-García; Andrés García-Granados; José M. Bautista; Amalia Diez; Antonio Puyet
BackgroundNatural products have played an important role as leads for the development of new drugs against malaria. Recent studies have shown that maslinic acid (MA), a natural triterpene obtained from olive pomace, which displays multiple biological and antimicrobial activities, also exerts inhibitory effects on the development of some Apicomplexan, including Eimeria, Toxoplasma and Neospora. To ascertain if MA displays anti-malarial activity, the main objective of this study was to asses the effect of MA on Plasmodium falciparum-infected erythrocytes in vitro.MethodsSynchronized P. falciparum-infected erythrocyte cultures were incubated under different conditions with MA, and compared to chloroquine and atovaquone treated cultures. The effects on parasite growth were determined by monitoring the parasitaemia and the accumulation of the different infective stages visualized in thin blood smears.ResultsMA inhibits the growth of P. falciparum Dd2 and 3D7 strains in infected erythrocytes in, dose-dependent manner, leading to the accumulation of immature forms at IC50 concentrations, while higher doses produced non-viable parasite cells. MA-treated infected-erythrocyte cultures were compared to those treated with chloroquine or atovaquone, showing significant differences in the pattern of accumulation of parasitic stages. Transient MA treatment at different parasite stages showed that the compound targeted intra-erythrocytic processes from early-ring to schizont stage. These results indicate that MA has a parasitostatic effect, which does not inactivate permanently P. falciparum, as the removal of the compound allowed the infection to continueConclusionsMA displays anti-malarial activity at multiple intraerythrocytic stages of the parasite and, depending on the dose and incubation time, behaves as a plasmodial parasitostatic compound. This novel parasitostatic effect appears to be unrelated to previous mechanisms proposed for current anti-malarial drugs, and may be relevant to uncover new prospective plasmodial targets and opens novel possibilities of therapies associated to host immune response.
Malaria Journal | 2009
Carlos Moneriz; Patricia Marín-García; José M. Bautista; Amalia Diez; Antonio Puyet
BackgroundImprovements on malarial diagnostic methods are currently needed for the correct detection in low-density Plasmodium falciparum infections. Microfluorimetric DNA-based assays have been previously used for evaluation of anti-malarial drug efficacy on Plasmodium infected erythrocytes. Several factors affecting the sensitivity of these methods have been evaluated, and tested for the detection and quantification of the parasite in low parasitaemia conditions.MethodsParasitaemia was assessed by measuring SYBRGreen I® (SGI) and PicoGreen® (PG) fluorescence of P. falciparum Dd2 cultures on human red blood cells. Different modifications of standard methods were tested to improve the detection sensitivity. Calculation of IC50 for chloroquine was used to validate the method.ResultsRemoval of haemoglobin from infected red-blood cells culture (IRBC) increased considerably the fluorescent signal obtained from both SGI and PG. Detergents used for cell lysis also showed to have an effect on the fluorescent signal. Upon depletion of haemoglobin and detergents the fluorescence emission of SGI and PG increased, respectively, 10- and 60-fold, extending notably the dynamic range of the assay. Under these conditions, a 20-fold higher PG vs. SGI fluorescent signal was observed. The estimated limits of detection and quantification for the PG haemoglobin/detergent-depleted method were 0.2% and 0.7% parasitaemia, respectively, which allow the detection of ~10 parasites per microliter. The method was validated on whole blood-infected samples, displaying similar results as those obtained using IRBC. Removal of white-blood cells prior to the assay allowed to increase the accuracy of the measurement, by reducing the relative uncertainty at the limit of detection from 0.5 to 0.1.ConclusionThe use of PG microassays on detergent-free, haemoglobin-depleted samples appears as the best choice both for the detection of Plasmodium in low-density infections and anti-malarial drugs tests.
Journal of Proteomics | 2014
José M. Bautista; Patricia Marín-García; Amalia Diez; Isabel G. Azcárate; Antonio Puyet
Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Malaria Journal | 2011
Carlos Moneriz; Patricia Marín-García; José M. Bautista; Amalia Diez; Antonio Puyet
BackgroundThe anti-malarial activity of maslinic acid (MA), a natural triterpene which has been previously shown to exert a parasitostatic action on Plasmodium falciparum cultures, was analysed in vivo by using the Plasmodium yoelii 17XL murine model.MethodsICR mice were infected with P. yoelii and treated with a single dose of MA by a intraperitoneal injection of MA (40 mg kg-1 day-1) followed by identical dose administration for the following three days. Parasitaemia and accumulation of intraerythrocytic stages was monitored microscopically. To assess protective immunity, cured mice were challenged with the same dose of parasites 40 days after recovery from the primary infection and parasitaemia was further monitored for 30 days. Humoral response was tested by ELISA and visualization of specific anti-P. yoelii antibodies was performed by Western-blotting.ResultsICR mice treated with MA increased the survival rate from 20% to 80%, showing an arrest of parasite maturation from day 3 to 7 after infection and leading to synchronization of the intraerythrocytic cycle and accumulation of schizonts by day 6, proving that MA also behaves as a parasitostatic agent in vivo. Mice which survived the primary infection displayed lower rates of parasitic growth, showing a decline of parasitaemia after day 15, and complete clearance at day 20. These mice remained immunoprotected, showing not malaria symptoms or detectable parasitaemia after rechallenge with the same lethal strain. The analysis of specific antibodies against P. yoelii, present in mice which survived the infection, showed a significant increase in the number and intensity of immunoreactive proteins, suggesting that the protected mice may trigger a strong humoral response.ConclusionThe survival increase observed in MA-treated mice can be explained considering that the parasitostatic effect exerted by this compound during the first days of infection increases the chances to develop effective innate and/or acquired immune responses. MA may represent a new class of anti-malarial compounds which, as a consequence of its parasitostatic action, favours the development of more effective sterilizing immune responses.
Brain Research | 2013
María Linares; Patricia Marín-García; Susana Pérez-Benavente; Jesús Sánchez-Nogueiro; Antonio Puyet; José M. Bautista; Amalia Diez
The role of neurotrophic factors on the integrity of the central nervous system (CNS) during cerebral malaria (CM) infection remains obscure, but the long-standing neurocognitive sequelae often observed in rescued children can be attributed in part to the modulation of neuronal survival and synaptic plasticity. To discriminate the contribution of key responses in the time-sequence of the pathogenic events that trigger the development of neurocognitive malaria syndrome we defined four stages (I-IV) of the neurological progression of CM in C57BL/6 mice infected with Plasmodium berghei ANKA. Upregulation of ICAM-1, VCAM-1, e-selectin and p-selectin expression was detected in all cerebral regions before parasitized red blood cells (pRBC) accumulation. As the severity of symptoms increased, BDNF mRNA progressively diminished in several brain regions, earliest in the thalamus-hypothalamus, cerebellum, brainstem and cortex, and correlated with a four-stage disease sequence. Immunohistochemical confocal microscopy revealed changes in the BDNF distribution pattern, suggesting altered axonal transport. During CM progression, molecular markers of neurological infection and inflammation in the parasite and the host, respectively, were accompanied by a switch in the brain constitutive proteasome to the immunoproteasome, which could impede normal protein turnover. In parallel with BDNF downregulation, NCAM expression also diminished with increased CM severity. Together, these data suggest that changes in BDNF availability could be involved in the pathogenesis of CM.