Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Milz is active.

Publication


Featured researches published by Patricia Milz.


Brain Topography | 2012

EEG microstates during resting represent personality differences

Felix Schlegel; Dietrich Lehmann; Pascal L. Faber; Patricia Milz; Lorena R. R. Gianotti

We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the ‘microstates’. The microstates were clustered into four classes of map topographies (A–D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative “atoms of thought”, are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophrenia.


Frontiers in Human Neuroscience | 2014

Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers

Dietrich Lehmann; Pascal L. Faber; Roberto D. Pascual-Marqui; Patricia Milz; W.M. Herrmann; Martha Koukkou; Naomi Saito; Georg Winterer; Kieko Kochi

Functional dissociation between brain processes is widely hypothesized to account for aberrations of thought and emotions in schizophrenic patients. The typically small groups of analyzed schizophrenic patients yielded different neurophysiological findings, probably because small patient groups are likely to comprise different schizophrenia subtypes. We analyzed multichannel eyes-closed resting EEG from three small groups of acutely ill, first episode productive schizophrenic patients before start of medication (from three centers: Bern N = 9; Osaka N = 9; Berlin N = 12) and their controls. Low resolution brain electromagnetic tomography (LORETA) was used to compute intracortical source model-based lagged functional connectivity not biased by volume conduction effects between 19 cortical regions of interest (ROIs). The connectivities were compared between controls and patients of each group. Conjunction analysis determined six aberrant cortical functional connectivities that were the same in the three patient groups. Four of these six concerned the facilitating EEG alpha-1 frequency activity; they were decreased in the patients. Another two of these six connectivities concerned the inhibiting EEG delta frequency activity; they were increased in the patients. The principal orientation of the six aberrant cortical functional connectivities was sagittal; five of them involved both hemispheres. In sum, activity in the posterior brain areas of preprocessing functions and the anterior brain areas of evaluation and behavior control functions were compromised by either decreased coupled activation or increased coupled inhibition, common across schizophrenia subtypes in the three patient groups. These results of the analyzed three independent groups of schizophrenics support the concept of functional dissociation.


Cognitive Processing | 2015

Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization

Pascal L. Faber; Dietrich Lehmann; Lorena R. R. Gianotti; Patricia Milz; Roberto D. Pascual-Marqui; Marlene Held; Kieko Kochi

Abstract Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.


International Journal of Clinical and Experimental Hypnosis | 2012

EEG sLORETA Functional Imaging During Hypnotic Arm Levitation and Voluntary Arm Lifting

Etzel Cardeña; Dietrich Lehmann; Pascal L. Faber; Peter Jönsson; Patricia Milz; Roberto D. Pascual-Marqui; Kieko Kochi

Abstract This study (N = 37 with high, medium, and low hypnotizables) evaluated depth reports and EEG activity during both voluntary and hypnotically induced left-arm lifting with sLORETA functional neuroimaging. The hypnotic condition was associated with higher activity in fast EEG frequencies in anterior regions and slow EEG frequencies in central-parietal regions, all left-sided. The voluntary condition was associated with fast frequency activity in right-hemisphere central-parietal regions and slow frequency activity in left anterior regions. Hypnotizability did not have a significant effect on EEG activity, but hypnotic depth correlated with left hemisphere increased anterior slow EEG and decreased central fast EEG activity. Hypnosis had a minimal effect on depth reports among lows, a moderate one among mediums, and a large one among highs. Because only left-arm data were available, the full role of the hemispheres remains to be clarified.


NeuroImage | 2017

The EEG microstate topography is predominantly determined by intracortical sources in the alpha band

Patricia Milz; Roberto D. Pascual-Marqui; Peter Achermann; Kieko Kochi; Pascal L. Faber

&NA; Human brain electric activity can be measured at high temporal and fairly good spatial resolution via electroencephalography (EEG). The EEG microstate analysis is an increasingly popular method used to investigate this activity at a millisecond resolution by segmenting it into quasi‐stable states of approximately 100 ms duration. These so‐called EEG microstates were postulated to represent atoms of thoughts and emotions and can be classified into four classes of topographies A through D, which explain up to 90% of the variance of continuous EEG. The present study investigated whether these topographies are primarily driven by alpha activity originating from the posterior cingulate cortex (all topographies), left and right posterior cortices, and the anterior cingulate cortex (topographies A, B, and C, respectively). We analyzed two 64‐channel resting state EEG datasets (N = 61 and N = 78) of healthy participants. Sources of head‐surface signals were determined via exact low resolution electromagnetic tomography (eLORETA). The Hilbert transformation was applied to identify instantaneous source strength of four EEG frequency bands (delta through beta). These source strength values were averaged for each participant across time periods belonging to a particular microstate. For each dataset, these averages of the different microstate classes were compared for each voxel. Consistent differences across datasets were identified via a conjunction analysis. The intracortical strength and spatial distribution of alpha band activity mainly determined whether a head‐surface topography of EEG microstate class A, B, C, or D was induced. EEG microstate class C was characterized by stronger alpha activity compared to all other classes in large portions of the cortex. Class A was associated with stronger left posterior alpha activity than classes B and D, and class B was associated with stronger right posterior alpha activity than A and D. Previous results indicated that EEG microstate dynamics reflect a fundamental mechanism of the human brain that is altered in different mental states in health and disease. They are characterized by systematic transitions between four head‐surface topographies, the EEG microstate classes. Our results show that intra‐cortical alpha oscillations, which likely reflect decreased cortical excitability, primarily account for the emergence of these classes. We suggest that microstate class dynamics reflect transitions between four global attractor states that are characterized by selective inhibition of specific intra‐cortical regions.


Frontiers in Human Neuroscience | 2014

sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

Patricia Milz; Pascal L. Faber; Dietrich Lehmann; Kieko Kochi; Roberto D. Pascual-Marqui

We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation). Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest (ROI) corresponding to the cortex underlying 19 scalp electrode sites, for each of the eight independent EEG frequency bands covering 1.5–44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed four significantly lower intracortical lagged coherences, but four significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators.


Bipolar Disorders | 2014

Brain electrical source imaging in manic and depressive episodes of bipolar disorder

Annamaria Painold; Pascal L. Faber; Patricia Milz; Eva Z. Reininghaus; Anna K. Holl; Martin Letmaier; Roberto D. Pascual-Marqui; Bernd Reininghaus; Hans-Peter Kapfhammer; Dietrich Lehmann

Bipolar disorder (BD) electroencephalographic (EEG) studies have reported varying results. The present study compared EEG in BD during manic and depressive episodes, using brain electrical source imaging [standardized low‐resolution electromagnetic tomography (sLORETA)] to assess the cortical spatial distribution of the sources of EEG oscillation frequencies.


bioRxiv | 2017

The Cross-Frequency Mediation Mechanism Of Intracortical Information Transactions

Roberto D. Pascual-Marqui; Pascal L. Faber; Patricia Milz; Kieko Kochi; Toshihiko Kinoshita; Keiichiro Nishida; Masafumi Yoshimura; Yuichi Kitaura; Shunichiro Ikeda; Ryouhei Ishii

In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized that “bottom-up” information processing of “content” elicits local, high frequency (beta-gamma) oscillations, whereas “top-down” processing is “contextual”, characterized by large scale integration spanning distant cortical regions, and implemented by slower frequency (theta-alpha) oscillations. This corresponds to a mechanism of cortical information transactions, where synchronization of beta-gamma oscillations between distant cortical regions is mediated by widespread theta-alpha oscillations. It is the aim of this paper to express this hypothesis quantitatively, in terms of a model that will allow testing this type of information transaction mechanism. The basic methodology used here corresponds to statistical mediation analysis, originally developed by (Baron and Kenny 1986). We generalize the classical mediator model to the case of multivariate complex-valued data, consisting of the discrete Fourier transform coefficients of signals of electric neuronal activity, at different frequencies, and at different cortical locations. The “mediation effect” is quantified here in a novel way, as the product of “dual frequency RV-coupling coefficients”, that were introduced in (Pascual-Marqui et al 2016, http://arxiv.org/abs/1603.05343). Relevant statistical procedures are presented for testing the cross-frequency mediation mechanism in general, and in particular for testing the von Stein & Sarnthein hypothesis.


Brain Topography | 2016

Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks

Patricia Milz; Roberto D. Pascual-Marqui; Dietrich Lehmann; Pascal L. Faber

Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.


bioRxiv | 2018

Comparing EEG/MEG neuroimaging methods based on localization error, false positive activity, and false positive connectivity

Roberto D. Pascual-Marqui; Pascal L. Faber; Toshihiko Kinoshita; Kieko Kochi; Patricia Milz; Keiichiro Nishida; Masafumi Yoshimura

EEG/MEG neuroimaging consists of estimating the cortical distribution of time varying signals of electric neuronal activity, for the study of functional localization and connectivity. Currently, many different imaging methods are being used, with very different capabilities of correct localization of activity and of correct localization of connectivity. The aim here is to provide a guideline for choosing the best (i.e. least bad) imaging method. This first study is limited to the comparison of the following methods for EEG signals: sLORETA and eLORETA (standardized and exact low resolution electromagnetic tomography), MNE (minimum norm estimate), dSPM (dynamic statistical parametric mapping), and LCMVBs (linearly constrained minimum variance beamformers). These methods are linear, except for the LCMVBs that make use of the quadratic EEG covariances. To achieve a fair comparison, it is assumed here that the generators are independent and widely distributed (i.e. not few in number), giving a well-defined theoretical population EEG covariance matrix for use with the LCMVBs. Measures of localization error, false positive activity, and false positive connectivity are defined and computed under ideal no-noise conditions. It is empirically shown with extensive simulations that: (1) MNE, dSPM, and all LCMVBs are in general incapable of correct localization, while sLORETA and eLORETA have exact (zero-error) localization; (2) the brain volume with false positive activity is significantly larger for MN, dSPM, and all LCMVBs, as compared to sLORETA and eLORETA; and (3) the number of false positive connections is significantly larger for MN, dSPM, all LCMVBs, and sLORETA, as compared to eLORETA. Non-vague and fully detailed equations are given. PASCAL program codes and data files are available. It is noted that the results reported here do not apply to the LCMVBs based on EEG covariance matrices generated from extremely few generators, such as only one or two independent point sources.

Collaboration


Dive into the Patricia Milz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge