Patricia Molina-Espeja
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia Molina-Espeja.
Applied and Environmental Microbiology | 2014
Patricia Molina-Espeja; Eva Garcia-Ruiz; David Gonzalez-Perez; René Ullrich; Martin Hofrichter; Miguel Alcalde
ABSTRACT Unspecific peroxygenase (UPO) represents a new type of heme-thiolate enzyme with self-sufficient mono(per)oxygenase activity and many potential applications in organic synthesis. With a view to taking advantage of these properties, we subjected the Agrocybe aegerita UPO1-encoding gene to directed evolution in Saccharomyces cerevisiae. To promote functional expression, several different signal peptides were fused to the mature protein, and the resulting products were tested. Over 9,000 clones were screened using an ad hoc dual-colorimetric assay that assessed both peroxidative and oxygen transfer activities. After 5 generations of directed evolution combined with hybrid approaches, 9 mutations were introduced that resulted in a 3,250-fold total activity improvement with no alteration in protein stability. A breakdown between secretion and catalytic activity was performed by replacing the native signal peptide of the original parental type with that of the evolved mutant; the evolved leader increased functional expression 27-fold, whereas an 18-fold improvement in the k cat/Km value for oxygen transfer activity was obtained. The evolved UPO1 was active and highly stable in the presence of organic cosolvents. Mutations in the hydrophobic core of the signal peptide contributed to enhance functional expression up to 8 mg/liter, while catalytic efficiencies for peroxidative and oxygen transfer reactions were increased by several mutations in the vicinity of the heme access channel. Overall, the directed-evolution platform described is a valuable point of departure for the development of customized UPOs with improved features and for the study of structure-function relationships.
PLOS ONE | 2014
David Gonzalez-Perez; Patricia Molina-Espeja; Eva Garcia-Ruiz; Miguel Alcalde
Approaches that depend on directed evolution require reliable methods to generate DNA diversity so that mutant libraries can focus on specific target regions. We took advantage of the high frequency of homologous DNA recombination in Saccharomyces cerevisiae to develop a strategy for domain mutagenesis aimed at introducing and in vivo recombining random mutations in defined segments of DNA. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) is a one-pot random mutagenic method for short protein regions that harnesses the in vivo recombination apparatus of yeast. Using this approach, libraries can be prepared with different mutational loads in DNA segments of less than 30 amino acids so that they can be assembled into the remaining unaltered DNA regions in vivo with high fidelity. As a proof of concept, we present two eukaryotic-ligninolytic enzyme case studies: i) the enhancement of the oxidative stability of a H2O2-sensitive versatile peroxidase by independent evolution of three distinct protein segments (Leu28-Gly57, Leu149-Ala174 and Ile199-Leu268); and ii) the heterologous functional expression of an unspecific peroxygenase by exclusive evolution of its native 43-residue signal sequence.
Enzyme and Microbial Technology | 2015
Patricia Molina-Espeja; Su Ma; Diana M. Mate; Roland Ludwig; Miguel Alcalde
Unspecific peroxygenase (UPO) is a highly efficient biocatalyst with a peroxide dependent monooxygenase activity and many biotechnological applications, but the absence of suitable heterologous expression systems has precluded its use in different industrial settings. Recently, the UPO from Agrocybe aegerita was evolved for secretion and activity in Saccharomyces cerevisiae [8]. In the current work, we describe a tandem-yeast expression system for UPO engineering and large scale production. By harnessing the directed evolution process in S. cerevisiae, the beneficial mutations for secretion enabled Pichia pastoris to express the evolved UPO under the control of the methanol inducible alcohol oxidase 1 promoter. Whilst secretion levels were found similar for both yeasts in flask fermentation (∼8mg/L), the recombinant UPO from P. pastoris showed a 27-fold enhanced production in fed-batch fermentation (217mg/L). The P. pastoris UPO variant maintained similar biochemical properties of the S. cerevisiae counterpart in terms of catalytic constants, pH activity profiles and thermostability. Thus, this tandem-yeast expression system ensures the engineering of UPOs to use them in future industrial applications as well as large scale production.
ChemBioChem | 2016
Patricia Molina-Espeja; Marina Cañellas; Francisco J. Plou; Martin Hofrichter; Fátima Lucas; Victor Guallar; Miguel Alcalde
There is an increasing interest in enzymes that catalyze the hydroxylation of naphthalene under mild conditions and with minimal requirements. To address this challenge, an extracellular fungal aromatic peroxygenase with mono(per)oxygenase activity was engineered to convert naphthalene selectively into 1‐naphthol. Mutant libraries constructed by random mutagenesis and DNA recombination were screened for peroxygenase activity on naphthalene together with quenching of the undesired peroxidative activity on 1‐naphthol (one‐electron oxidation). The resulting double mutant (G241D‐R257K) obtained from this process was characterized biochemically and computationally. The conformational changes produced by directed evolution improved the substrates catalytic position. Powered exclusively by catalytic concentrations of H2O2, this soluble and stable biocatalyst has a total turnover number of 50 000, with high regioselectivity (97 %) and reduced peroxidative activity.
Biotechnology Advances | 2016
Patricia Molina-Espeja; Javier Viña-Gonzalez; Bernardo J. Gomez-Fernandez; Javier Martin-Diaz; Eva Garcia-Ruiz; Miguel Alcalde
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Protein Engineering Design & Selection | 2017
Diana M. Mate; Miguel Palomino; Patricia Molina-Espeja; Javier Martin-Diaz; Miguel Alcalde
Unspecific peroxygenase (UPO) is a heme-thiolate peroxidase capable of performing with high-selectivity C-H oxyfunctionalizations of great interest in organic synthesis through its peroxygenative activity. However, the convergence of such activity with an unwanted peroxidative activity encumbers practical applications. In this study, we have modified the peroxygenative:peroxidative activity ratio (P:p ratio) of UPO from Agrocybe aegerita by structure-guided evolution. Several flexible loops (Glu1-Pro35, Gly103-Asp131, Ser226-Gly243, Gln254-Thr276 and Ty293-Arg327) were selected on the basis on their B-factors and ΔΔG values. The full ensemble of segments (43% of UPO sequence) was subjected to focused evolution by the Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) method in Saccharomyces cerevisiae. Five independent mutant libraries were screened in terms of P:p ratio and thermostability. We identified several variants that harbored substitutions at positions 120 and 320 with a strong enhancement in the P:p ratio albeit at the cost of stability. The most thermostable mutant of this process (S226G with an increased T50 of 2°C) was subjected to further combinatorial saturation mutagenesis on Thr120 and Thr320 yielding a collection of variants with modified P:p ratio and recovered stability. Our results seem to indicate the coexistence of several oxidation sites for peroxidative and peroxygenative activities in UPO.
Archive | 2017
Patricia Molina-Espeja; Patricia Gomez de Santos; Miguel Alcalde
Unspecific peroxygenase (UPO) is a heme-thiolate peroxidase with mono(per)oxygenase activity for the selective oxyfunctionalization of C-H bonds. Fueled by catalytic concentrations of H2O2, which acts as both oxygen donor and as final electron acceptor, this stable, soluble, and extracellular enzyme is a potential biocatalyst for dozens of transformations that are of considerable interest in organic synthesis. In this chapter we describe the main attributes of this versatile enzyme while reflecting on the directed evolution campaigns recently followed in our laboratory that set out to enhance the functional expression of UPO in yeast and improve the activity, as well as approximating its properties to the required industrial standards.
Applied and Environmental Microbiology | 2018
Javier Martin-Diaz; Carmen Paret; Eva García-Ruiz; Patricia Molina-Espeja; Miguel Alcalde
Fungal peroxygenases resemble the peroxide shunt pathway of cytochrome P450 monoxygenases, performing selective oxyfunctionalizations of unactivated C-H bonds in a broad range of organic compounds. In this study, we combined neutral genetic drift and in vivo DNA shuffling to generate highly functional peroxygenase mutant libraries. The panel of neutrally evolved peroxygenases showed different activity profiles for peroxygenative substrates and improved stability with respect to temperature and the presence of organic cosolvents, making the enzymes valuable blueprints for emerging evolution campaigns. This association of DNA recombination and neutral drift is paving the way for future work in peroxygenase engineering and, from a more general perspective, to any other enzyme system heterologously expressed in S. cerevisiae. ABSTRACT Unspecific peroxygenase (UPO) is a highly promiscuous biocatalyst, and its selective mono(per)oxygenase activity makes it useful for many synthetic chemistry applications. Among the broad repertory of library creation methods for directed enzyme evolution, genetic drift allows neutral mutations to be accumulated gradually within a polymorphic network of variants. In this study, we conducted a campaign of genetic drift with UPO in Saccharomyces cerevisiae, so that neutral mutations were simply added and recombined in vivo. With low mutational loading and an activity threshold of 45% of the parents native function, mutant libraries enriched in folded active UPO variants were generated. After only eight rounds of genetic drift and DNA shuffling, we identified an ensemble of 25 neutrally evolved variants with changes in peroxidative and peroxygenative activities, kinetic thermostability, and enhanced tolerance to organic solvents. With an average of 4.6 substitutions introduced per clone, neutral mutations covered approximately 10% of the protein sequence. Accordingly, this study opens new avenues for UPO design by bringing together neutral genetic drift and DNA recombination in vivo. IMPORTANCE Fungal peroxygenases resemble the peroxide shunt pathway of cytochrome P450 monoxygenases, performing selective oxyfunctionalizations of unactivated C-H bonds in a broad range of organic compounds. In this study, we combined neutral genetic drift and in vivo DNA shuffling to generate highly functional peroxygenase mutant libraries. The panel of neutrally evolved peroxygenases showed different activity profiles for peroxygenative substrates and improved stability with respect to temperature and the presence of organic cosolvents, making the enzymes valuable blueprints for emerging evolution campaigns. This association of DNA recombination and neutral drift is paving the way for future work in peroxygenase engineering and, from a more general perspective, to any other enzyme system heterologously expressed in S. cerevisiae.
Cascade Biocatalysis : Integrating Stereoselective and Environmentally Friendly Reactions | 2014
Eva Garcia-Ruiz; Diana M. Mate; David Gonzalez-Perez; Patricia Molina-Espeja; Susana Camarero; Ángel T. Martínez; Antonio Ballesteros; Miguel Alcalde
ACS Catalysis | 2018
Patricia Gomez de Santos; Marina Cañellas; Florian Tieves; Sabry H. H. Younes; Patricia Molina-Espeja; Martin Hofrichter; Frank Hollmann; Victor Guallar; Miguel Alcalde