Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrícia Neves is active.

Publication


Featured researches published by Patrícia Neves.


Green Chemistry | 2013

Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts

Patrícia Neves; Margarida M. Antunes; Patrícia A. Russo; Joana P. Abrantes; Sérgio Lima; Auguste Fernandes; Martyn Pillinger; Sílvia M. Rocha; M.F. Ribeiro; Anabela A. Valente

Mesoporous aluminosilicates of the type Al-TUD-1, prepared via “green”, low-cost, non-surfactant templating routes, are effective and versatile heterogeneous acid catalysts for the production of useful bio-based furanic ethers and levulinate esters, via the reactions of the biorenewable substrates 5-hydroxymethyl-2-furfural (Hmf) or furfuryl alcohol (FA) with aliphatic alcohols. The identification of reaction intermediates and products by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry was carried out, giving mechanistic insights. Ethyl levulinate (EL) was formed from FA or Hmf as substrates, with higher EL yields being reached in the former case. Different types of alkyl levulinates may be synthesized from FA using Al-TUD-1 catalysts. On the other hand, 5-(ethoxymethyl)furan-2-carbaldehyde may be formed as the main product from Hmf. Modifications of the properties of Al-TUD-1 involved varying the Si/Al ratio and applying a post-synthesis acid treatment. The influence of these factors and of the reaction conditions on the catalytic reactions was investigated. The efficient regeneration and recyclability of Al-TUD-1 was assessed.


Journal of Materials Chemistry | 2014

Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion

Patrícia A. Russo; Margarida M. Antunes; Patrícia Neves; Paul V. Wiper; E. Fazio; F. Neri; F. Barreca; Luís Mafra; Martyn Pillinger; Nicola Pinna; Anabela A. Valente

Acid catalysis plays an important role in biomass conversion processes for producing chemicals and fuels. We report a relatively simple procedure for synthesizing versatile, strong acid catalysts based on carbon and carbon–silica composites with sulfonic acid groups. The process involves chemical activation of a sulfonic acid organic precursor at low temperature. The synthesis conditions can be modified to tune the surface composition, texture, and the acid properties of the materials towards superior catalytic performances. Molecular level insights into the nature and strength of the acid sites were gained by combining high resolution XPS and 1H-decoupled 31P MAS NMR spectroscopy of adsorbed triethylphosphine oxide. These materials are effective acid catalysts for the conversion of different biomass-derived chemicals to useful bio products such as furanic ethers and levulinate esters.


Inorganic Chemistry | 2011

Synthesis and catalytic properties of molybdenum(VI) complexes with tris(3,5-dimethyl-1-pyrazolyl)methane.

Patrícia Neves; Sandra Gago; Salete S. Balula; André D. Lopes; Anabela A. Valente; Luís Cunha-Silva; Filipe A. Almeida Paz; Martyn Pillinger; João Rocha; Carlos M. Silva; Isabel S. Gonçalves

The complex [MoO(2)Cl{HC(3,5-Me(2)pz)(3)}]BF(4) (1) (HC(3,5-Me(2)pz)(3) = tris(3,5-dimethyl-1-pyrazolyl)methane) has been prepared and examined as a catalyst for epoxidation of olefins at 55 °C using tert-butyl hydroperoxide (TBHP) as the oxidant. For reaction of cis-cyclooctene, epoxycyclooctane is obtained quantitatively within 5 h when water is rigorously excluded from the reaction mixture. Increasing amounts of water in the reaction mixture lead to lower activities (without affecting product selectivity) and transformation of 1 into the trioxidomolybdenum(VI) complex [{HC(3,5-Me(2)pz)(3)}MoO(3)] (4). Complex 4 was isolated as a microcrystalline solid by refluxing a suspension of 1 in water. The powder X-ray diffraction pattern of 4 can be indexed in the orthorhombic Pnma system, with a = 16.7349(5) Å, b = 13.6380(4) Å, and c = 7.8513(3) Å. Treatment of 1 in dichloromethane with excess TBHP led to isolation of the symmetrical [Mo(2)O(4)(μ(2)-O){HC(3,5-Me(2)pz)(3)}(2)](BF(4))(2) (2) and unsymmetrical [Mo(2)O(3)(O(2))(2)(μ(2)-O)(H(2)O){HC(3,5-Me(2)pz)(3)}] (3) oxido-bridged dimers, which were characterized by single-crystal X-ray diffraction. Complex 2 displays the well-known (Mo(2)O(5))(2+) bridging structure where each dioxidomolybdenum(VI) center is coordinated to three N atoms of the organic ligand and one μ(2)-bridging O atom. The unusual complex 3 comprises dioxido and oxidodiperoxo molybdenum(VI) centers linked by a μ(2)-bridging O atom, with the former center being coordinated to the tridentate N-ligand. The dinuclear complexes exhibit a similar catalytic performance to that found for mononuclear 1. For complexes 1 and 2 use of the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate and N-butyl-3-methylpyridinium tetrafluoroborate as solvents allowed the complexes to be completely dissolved, and in each case the catalyst and IL could be recycled and reused without loss of activity.


Archive | 2014

Solid acids with SO3H groups and tunable surface properties

Patrícia A. Russo; Margarida M. Antunes; Patrícia Neves; Paul V. Wiper; E. Fazio; F. Neri; F. Barreca; Luís Mafra; Martyn Pillinger; Nicola Pinna; Anabela A. Valente

Acid catalysis plays an important role in biomass conversion processes for producing chemicals and fuels. We report a relatively simple procedure for synthesizing versatile, strong acid catalysts based on carbon and carbon–silica composites with sulfonic acid groups. The process involves chemical activation of a sulfonic acid organic precursor at low temperature. The synthesis conditions can be modified to tune the surface composition, texture, and the acid properties of the materials towards superior catalytic performances. Molecular level insights into the nature and strength of the acid sites were gained by combining high resolution XPS and 1H-decoupled 31P MAS NMR spectroscopy of adsorbed triethylphosphine oxide. These materials are effective acid catalysts for the conversion of different biomass-derived chemicals to useful bio products such as furanic ethers and levulinate esters.


Green Chemistry | 2014

Mesoporous carbon–silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries

Patrícia A. Russo; Margarida M. Antunes; Patrícia Neves; Paul V. Wiper; E. Fazio; F. Neri; F. Barreca; Luís Mafra; Martyn Pillinger; Nicola Pinna; Anabela A. Valente

Useful bio-products are obtainable via the catalytic conversion of biomass or derived intermediates as renewable carbon sources. In particular, furanic ethers and levulinate esters (denoted bioEs) have wide application profiles and can be synthesised via acid-catalysed reactions of intermediates such as fructose, 5-hydroxymethyl-2-furaldehyde (HMF) and furfuryl alcohol (FA) with ethanol. Solid acid catalysts are preferred for producing the bioEs with environmental benefits. Furthermore, the versatility of the catalyst in obtaining the bioEs from different intermediates is attractive for process economics, and in the case of porous catalysts, large pore sizes can be beneficial for operating in the kinetic regime. Carbon-based materials are attractive acid catalysts due to their modifiable surface, e.g. with relatively strong sulfonic acid groups (SO3H). Considering these aspects, here, we report the preparation of mesoporous (SO3H)-functionalised-carbon/silica (C/S) composites with large pores and high amounts of acid sites (up to 2.3 mmol g−1), and their application as versatile solid acid catalysts for producing bioEs from fructose, HMF and FA. The mesoporous composites were prepared by activation of an organic compound deposited on the ordered mesoporous silicas MCF (mesostructured cellular foam) and SBA-15, where the organic compound (p-toluenesulfonic acid) acted simultaneously as the carbon and SO3H source. The atomic-level characterisation of the acid nature and strengths was performed by 31P solid-state NMR studies of an adsorbed base probe, in combination with FT-IR and XPS. Comparative catalytic studies showed that the C/S composites are interesting catalysts for obtaining bioEs in high yields, in comparison with classical solid acid catalysts such as sulfonic acid resin Amberlyst™-15 and nanocrystalline (large pore) zeolite H-beta.


Inorganic Chemistry | 2014

Synthesis, structural elucidation, and catalytic properties in olefin epoxidation of the polymeric hybrid material [Mo3O9(2-[3(5)-pyrazolyl]pyridine)]n.

Tatiana R. Amarante; Patrícia Neves; Ana C. Gomes; Mariela M. Nolasco; Paulo J. A. Ribeiro-Claro; Ana C. Coelho; Anabela A. Valente; Filipe A. Almeida Paz; Stef Smeets; Lynne B. McCusker; Martyn Pillinger; Isabel S. Gonçalves

The reaction of [MoO2Cl2(pzpy)] (1) (pzpy = 2-[3(5)-pyrazolyl]pyridine) with water in an open reflux system (16 h), in a microwave synthesis system (120 °C, 2 h), or in a Teflon-lined stainless steel digestion bomb (100 °C, 19 h) gave the molybdenum oxide/pyrazolylpyridine polymeric hybrid material [Mo3O9(pzpy)]n (2) as a microcrystalline powder in yields of 72–79%. Compound 2 can also be obtained by the hydrothermal reaction of MoO3, pzpy, and H2O at 160 °C for 3 d. Secondary products isolated from the reaction solutions included the salt (pzpyH)2(MoCl4) (3) (pzpyH = 2-[3(5)-pyrazolyl]pyridinium), containing a very rare example of the tetrahedral MoCl4(2–) anion, and the tetranuclear compound [Mo4O12(pzpy)4] (4). Reaction of 2 with excess tert-butylhydroperoxide (TBHP) led to the isolation of the oxodiperoxo complex [MoO(O2)2(pzpy)] (5). Single-crystal X-ray structures of 3 and 5 are described. Fourier transform (FT)-IR and FT Raman spectra for 1, 4, and 5 were assigned based on density functional theory calculations. The structure of 2 was determined from synchrotron powder X-ray diffraction data in combination with other physicochemical information. In 2, a hybrid organic–inorganic one-dimensional (1D) polymer, ∞(1)[Mo3O9(pzpy)], is formed by the connection of two very distinct components: a double ladder-type inorganic core reminiscent of the crystal structure of MoO3 and 1D chains of corner-sharing distorted {MoO4N2} octahedra. Compound 2 exhibits moderate activity and high selectivity when used as a (pre)catalyst for the epoxidation of cis-cyclooctene with TBHP. Under the reaction conditions used, 2 is poorly soluble and is gradually converted into 5, which is at least partly responsible for the catalytic reaction.


Inorganic Chemistry | 2012

Synthesis, structural elucidation, and application of a pyrazolylpyridine-molybdenum oxide composite as a heterogeneous catalyst for olefin epoxidation.

Sónia Figueiredo; Ana C. Gomes; Patrícia Neves; Tatiana R. Amarante; Filipe A. Almeida Paz; Rosário Soares; André D. Lopes; Anabela A. Valente; Martyn Pillinger; Isabel S. Gonçalves

The reaction of [MoO(2)Cl(2)(pypzEA)] (1) (pypzEA = ethyl[3-(pyridin-2-yl)-1H-pyrazol-1-yl]acetate) with water in a Teflon-lined stainless steel autoclave (100 °C) or in an open reflux system leads to the isolation of the molybdenum oxide/pyrazolylpyridine composite material [Mo(2)O(6)(HpypzA)] (2; HpypzA = [3-(pyridinium-2-yl)-1H-pyrazol-1-yl]acetate). The solid state structure of 2 was solved through single crystal and powder X-ray diffraction analyses in conjunction with information derived from FT-IR and (13)C CP MAS NMR spectroscopies and elemental analyses. In the asymmetric unit of 2, two crystallographically distinct Mo(6+) centers are bridged by a syn,syn-carboxylate group of HpypzA. The periodic repetition of these units along the a axis of the unit cell leads to the formation of a one-dimensional composite polymer, (∞)(1)[Mo(2)O(6)(HpypzA)]. The outstretched pyrazolylpyridine groups of adjacent polymers interdigitate to form a zipper-like motif, generating strong onset π-π contacts between adjacent rings of coordinated HpypzA molecules. The composite oxide 2 is a stable heterogeneous catalyst for liquid-phase olefin epoxidation.


Inorganic Chemistry | 2015

Synthesis and Structural Elucidation of Triazolylmolybdenum(VI) Oxide Hybrids and Their Behavior as Oxidation Catalysts.

Andrey B. Lysenko; Ganna A. Senchyk; Konstantin V. Domasevitch; Jürg Hauser; Daniel Fuhrmann; Merten Kobalz; Harald Krautscheid; Patrícia Neves; Anabela A. Valente; Isabel S. Gonçalves

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N-N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235-350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic-basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.


Catalysis Science & Technology | 2016

Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural

Margarida M. Antunes; Patrícia Neves; Auguste Fernandes; Sérgio Lima; Andreia Silva; M.F. Ribeiro; Carlos M. Silva; Martyn Pillinger; Anabela A. Valente

The sustainable conversion of biomass and biomass-derived platform chemicals demands efficient catalytic processes for which modified versions of zeolites can be strategically important. The catalytic potential of bulk and composite catalysts which simultaneously feature zeolite crystallinity, mesoporosity and Zr and Al sites were explored for the valorisation of furfural (Fur; industrially produced from hemicelluloses) via integrated reduction and acid reactions in alcohol media, to give useful bio-products (bioP), namely, furanic ethers, levulinate esters and angelica lactones. Different synthetic strategies were used starting from zeolite microcrystals or nanocrystals. A composite consisting of nanocrystals of Zr,Al-Beta embedded in a mesoporous matrix is reported for the first time. In a different synthesis approach, a bulk mesoporous zeotype material was prepared by post-synthesis alkaline/acid/impregnation treatments, and explored for the first time as a catalyst for a one-pot reduction/acid reaction system. Characterisation studies of the morphology, structure, texture and nature of the Al and Zr sites (27Al MAS NMR spectroscopy, FT-IR spectroscopy of adsorbed pyridine or deuterated acetonitrile) helped understand the influence of material properties on catalytic performance. These types of materials are active and stable catalysts for the integrated conversion of Fur to bioP.


Catalysis Science & Technology | 2016

Oxidomolybdenum complexes for acid catalysis using alcohols as solvents and reactants

Ana C. Gomes; Patrícia Neves; Luís Cunha-Silva; Anabela A. Valente; Isabel S. Gonçalves; Martyn Pillinger

The application field of dichloridodioxidomolybdenum(VI) chelate complexes, which have been intensively investigated as catalysts for liquid-phase olefin epoxidation, is broadened to encompass acid catalysis, in particular, alcoholysis and acetalisation reactions. Complex [MoO2Cl2(L)] (1) with L = 4,4′-di-tert-butyl-2,2′-bipyridine was chosen as (pre)catalyst. Depending on the reaction conditions, 1 either remained structurally intact or was transformed into different metal species, the structures of which were determined on the basis of single-crystal X-ray diffraction, spectroscopic techniques (FT-IR and 1H NMR), and elemental analysis. The first example of a mixed-ligand complex of the type [MoO2X(OR)(L)] (X = halide) is disclosed. This complex is one of only a handful of complexes known to date that exhibit an all-cis configuration instead of the usual cis-oxido, trans-X, cis-L configuration (X = anionic ligand). Mechanistic considerations of the formation of the metal species are made.

Collaboration


Dive into the Patrícia Neves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Gago

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Auguste Fernandes

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge