Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrícia Oliveira is active.

Publication


Featured researches published by Patrícia Oliveira.


Human Molecular Genetics | 2010

Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer

Hugo Pinheiro; Renata Bordeira-Carriço; Susana Seixas; Joana Carvalho; Janine Senz; Patrícia Oliveira; Patrícia Inácio; Leonor Gusmão; Jorge Rocha; David Huntsman; Raquel Seruca; Carla Oliveira

Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant cancer susceptibility syndrome characterized by early-onset diffuse gastric cancer (DGC) and lobular breast cancer. E-cadherin (CDH1) heterozygous germline mutations and deletions are found in 40% of families. Independent of CDH1 alterations, most HDGC tumours display mislocalized or absent E-cadherin immunoexpression, therefore undetected defects at the CDH1 locus may still be involved. We aimed at determining whether CDH1 mutation-negative probands display germline CDH1 allele-specific expression (ASE) imbalance, using a single-nucleotide primer extension-based procedure and tried to uncover the underlying molecular defect. CDH1 ASE analysis was performed using three intragenic SNPs in RNA extracted from the blood of 21 cancer-free individuals and 22 HDGC probands (5 CDH1 mutation carriers and 17 CDH1 negative). Germline promoter methylation, deletions and haplotype-related susceptibility at the CDH1 locus were analysed. Both CDH1 alleles from cancer-free individuals displayed equivalent expression levels, whereas monoallelic CDH1 expression or high allelic expression imbalance (AI) was present in 80% of CDH1 mutant and 70.6% (n = 12) of CDH1-negative HDGC probands. Germline deletions and promoter hypermethylation were found in 25% of probands displaying high CDH1 AI. No particular haplotype was found to be associated with CDH1 high AI. Germline CDH1 AI is highly frequent among CDH1 mutation-negative probands but was not seen in cancer-free individuals. This implicates the CDH1 locus in the majority of mutation-negative HDGC families.


PLOS ONE | 2012

Loss and Recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation Is a Mechanism Involved in Epithelial-Mesenchymal-Epithelial Transitions

Salomé S. Pinho; Patrícia Oliveira; Joana Cabral; Sandra Carvalho; David Huntsman; Fátima Gärtner; Raquel Seruca; Celso A. Reis; Carla Oliveira

Background N-acetylglucosaminyltransferase-III (GnT-III) is a glycosyltransferase encoded by Mgat3 that catalyzes the addition of β1,4-bisecting-N-acetylglucosamine on N-glycans. GnT-III has been pointed as a metastases suppressor having varying effects on cell adhesion and migration. We have previously described the existence of a functional feedback loop between E-cadherin expression and GnT-III-mediated glycosylation. The effects of GnT-III-mediated glycosylation on E-cadherin expression and cellular phenotype lead us to evaluate Mgat3 and GnT-III-glycosylation role during Epithelial-Mesenchymal-Transition (EMT) and the reverted process, Mesenchymal-Epithelial-Transition (MET). Methodology/Principal Findings We analyzed the expression profile and genetic mechanism controlling Mgat3 expression as well as GnT-III-mediated glycosylation, in general and specifically on E-cadherin, during EMT/MET. We found that during EMT, Mgat3 expression was dramatically decreased and later recovered when cells returned to an epithelial-like phenotype. We further identified that Mgat3 promoter methylation/demethylation is involved in this expression regulation. The impact of Mgat3 expression variation, along EMT/MET, leads to a variation in the expression levels of the enzymatic product of GnT-III (bisecting GlcNAc structures), and more importantly, to the specific modification of E-cadherin glycosylation with bisecting GlcNAc structures. Conclusions/Significance Altogether, this work identifies for the first time Mgat3 glycogene expression and GnT-III-mediated glycosylation, specifically on E-cadherin, as a novel and major component of the EMT/MET mechanism signature, supporting its role during EMT/MET.


Biochimica et Biophysica Acta | 2015

Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways.

Ana Magalhães; Ricardo Marcos-Pinto; Alison V. Nairn; Mitche dela Rosa; Rui M. Ferreira; Susana Junqueira-Neto; Daniela Freitas; Joana Gomes; Patrícia Oliveira; Marta R. Santos; Nuno T. Marcos; Wen Xiaogang; Ceu Figueiredo; Carla Oliveira; Mário Dinis-Ribeiro; Fátima Carneiro; Kelley W. Moremen; Leonor David; Celso A. Reis

Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.


PLOS ONE | 2013

Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

Julio Cesar Madureira de-Freitas-Junior; Sandra Carvalho; Ana M. Dias; Patrícia Oliveira; Joana Cabral; Raquel Seruca; Carla Oliveira; José Andrés Morgado-Díaz; Celso A. Reis; Salomé S. Pinho

Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications.


Human Molecular Genetics | 2012

Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesis

Hugo Pinheiro; Joana Carvalho; Patrícia Oliveira; Daniel Ferreira; Marta Pinto; Hugo Osório; Danilo Licastro; Renata Bordeira-Carriço; Peter Jordan; Dejan Lazarevic; Remo Sanges; Elia Stupka; David Huntsman; Raquel Seruca; Carla Oliveira

Disruption of E-cadherin (CDH1 gene) expression, subcellular localization or function arises during initiation and progression of almost 90% of all epithelial carcinomas. Nevertheless, the mechanisms through which this occurs are largely unknown. Previous studies showed the importance of CDH1 intron 2 sequences for proper gene and protein expression, supporting these as E-cadherin cis-modulators. Through RACE and RT-PCR, we searched for transcription events arising from CDH1 intron 2 and discovered several new transcripts. One, named CDH1a, with high expression in spleen and absent from normal stomach, was demonstrated to be translated into a novel isoform, differing from canonical E-cadherin in its N-terminal, as determined by mass spectrometry. Quantitative and functional assays showed that when overexpressed in an E-cadherin negative context, CDH1a replaced canonical protein interactions and functions. However, when co-expressed with canonical E-cadherin, CDH1a increased cell invasion and angiogenesis. Further, interferon-induced gene IFITM1 and IFI27 levels were increased upon CDH1a overexpression. Effects on invasion and IFITM1 and IFI27 expression were reverted upon CDH1a-specific knockdown. Importantly, CDH1a was de novo expressed in gastric cancer cell lines. This study presents a new mechanism by which E-cadherin functions are impaired by cis-regulatory mechanisms possibly with the involvement of inflammatory machinery. If confirmed in other cancer models, our data enclose potential for designing targeted therapies to rescue E-cadherin function.


Infection and Immunity | 2017

Hepcidin-(In)dependent Mechanisms of Iron Metabolism Regulation during Infection by Listeria and Salmonella

Ana C. Moreira; João V. Neves; Tânia Silva; Patrícia Oliveira; Maria Salomé Gomes; Pedro Rodrigues

ABSTRACT During bacterial infection, the pathogenic agent and the host battle for iron, due to its importance for fundamental cellular processes. However, iron redistribution and sequestration during infection can culminate in anemia. Although hepcidin has been recognized as the key regulator of iron metabolism, in some infections its levels remain unaffected, suggesting the involvement of other players in iron metabolism deregulation. In this work, we use a mouse model to elucidate the main cellular and molecular mechanisms that lead to iron redistribution during infection with two different pathogens: Listeria monocytogenes and Salmonella enterica serovar Typhimurium. Both infections clearly impacted iron metabolism, causing iron redistribution, decreasing serum iron levels, decreasing the saturation of transferrin, and increasing iron accumulation in the liver. Both infections were accompanied by the release of proinflammatory cytokines. However, when analyzing iron-related gene expression in the liver, we observed that hepcidin was induced by S. Typhimurium but not by L. monocytogenes. In the latter model, the downregulation of hepatic ferroportin mRNA and protein levels suggested that ferroportin plays a major role in iron redistribution. On the other hand, S. Typhimurium infection induced the expression of hepcidin mRNA, and we show here, for the first time in vivo, that this induction is Toll-like receptor 4 (TLR4) dependent. In this work, we compare several aspects of iron metabolism alterations induced by two different pathogens and suggest that hepcidin-(in)dependent mechanisms contribute to iron redistribution upon infection.


Nature Communications | 2018

The effects of death and post-mortem cold ischemia on human tissue transcriptomes

Pedro Ferreira; Manuel Muñoz-Aguirre; Ferran Reverter; Caio P. Sá Godinho; Abel Sousa; Alicia Amadoz; Reza Sodaei; Marta R. Hidalgo; Dmitri D. Pervouchine; Ramil Nurtdinov; Alessandra Breschi; Raziel Amador; Patrícia Oliveira; Cankut Cubuk; Joao Curado; François Aguet; Carla Oliveira; Joaquín Dopazo; Michael Sammeth; Kristin Ardlie; Roderic Guigó

Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.RNA levels in post-mortem tissue can differ greatly from those before death. Studying the effect of post-mortem interval on the transcriptome in 36 human tissues, Ferreira et al. find that the response to death is largely tissue-specific and develop a model to predict time since death based on RNA data.


Scientific Reports | 2016

Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation.

Patrícia Oliveira; Joana Carvalho; Sara Rocha; Mafalda Azevedo; Inês Reis; Vânia Camilo; Bárbara Sousa; Sofia Valente; Joana Paredes; Raquel Almeida; David Huntsman; Carla Oliveira

Dies1/VISTA induces embryonic stem-cell differentiation, via BMP-pathway, but also acts as inflammation regulator and immune-response modulator. Dies1 inhibition in a melanoma-mouse model led to increased tumour-infiltrating T-cells and decreased tumour growth, emphasizing Dies1 relevance in tumour-microenvironment. Dies1 is involved in cell de/differentiation, inflammation and cancer processes, which mimic those associated with Epithelial-to-Mesenchymal-Transition (EMT). Despite this axis linking Dies1 with EMT and cancer, its expression, modulation and relevance in these contexts is unknown. To address this, we analysed Dies1 expression, its regulation by promoter-methylation and miR-125a-5p overexpression, and its association with BMP-pathway downstream-effectors, in a TGFβ1-induced EMT-model, cancer cell-lines and primary samples. We detected promoter-methylation as a mechanism controlling Dies1 expression in our EMT-model and in several cancer cell-lines. We showed that the relationship between Dies1 expression and BMP-pathway effectors observed in the EMT-model, was not present in all cell-lines, suggesting that Dies1 has other cell-specific effectors, beyond the BMP-pathway. We further demonstrated that: Dies1 expression loss is a recurrent event in GC, caused by promoter methylation and/or miR-125a-5p overexpression and; GC-microenvironment myofibroblasts overexpress Dies1. Our findings highlight Dies1 as a novel player in GC, with distinct roles within tumour cells and in the tumour-microenvironment.


European Journal of Human Genetics | 2012

Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

Patrícia Oliveira; Remo Sanges; David Huntsman; Elia Stupka; Carla Oliveira

Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer.


International Journal of Molecular Sciences | 2018

The Transcriptomic Landscape of Gastric Cancer: Insights into Epstein-Barr Virus Infected and Microsatellite Unstable Tumors

Irene Gullo; Joana Carvalho; Diana Martins; Diana Lemos; A.M. Monteiro; Marta Ferreira; Kakoli Das; Patrick Tan; Carla Oliveira; Fátima Carneiro; Patrícia Oliveira

Background: Epstein-Barr Virus (EBV) positive and microsatellite unstable (MSI-high) gastric cancer (GC) are molecular subgroups with distinctive molecular profiles. We explored the transcriptomic differences between EBV+ and MSI-high GCs, and the expression of current GC immunotherapy targets such as PD-1, PD-L1, CTLA4 and Dies1/VISTA. Methods: Using Nanostring Technology and comparative bioinformatics, we analyzed the expression of 499 genes in 46 GCs, classified either as EBV positive (EBER in situ hybridization) or MSI-high (PCR/fragment analysis). PD-L1 protein expression was assessed by immunohistochemistry. Results: From the 46 GCs, 27 tested MSI-high/EBV−, 15 tested MSS/EBV+ and four tested MSS/EBV−. The Nanostring CodeSet could segregate GCs according to MSI and, to a lesser extent, EBV status. Functional annotation of differentially expressed genes associated MSI-high/EBV− GCs with mitotic activity and MSS/EBV+ GCs with immune response. PD-L1 protein expression, evaluated in stromal immune cells, was lower in MSI-high/EBV− GCs. High mRNA expression of PD-1, CTLA4 and Dies1/VISTA and distinctive PD-1/PD-L1 co-expression patterns (PD-1high/PD-L1low, PD-1high/PDL1high) were associated with MSS/EBV+ molecular subtype and gastric cancer with lymphoid stroma (GCLS) morphological features. Conclusions: EBV+ and MSI-high GCs present distinct transcriptomic profiles. GCLS/EBV+ cases frequently present co-expression of multiple immunotherapy targets, a finding with putative therapeutic implications.

Collaboration


Dive into the Patrícia Oliveira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Carrilho

Hospitais da Universidade de Coimbra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mara Ventura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Diana Oliveira

State University of Ceará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Huntsman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge