Patricia R. Komuniecki
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia R. Komuniecki.
Genetics | 2005
Robert J. Hobson; Vera Hapiak; Hong Xiao; Kara L. Buehrer; Patricia R. Komuniecki; Richard Komuniecki
Serotonin (5-HT) stimulates both pharyngeal pumping and egg laying in Caenorhabditis elegans. Four distinct 5-HT receptors have been partially characterized, but little is known about their function in vivo. SER-7 exhibits most sequence identity to the mammalian 5-HT7 receptors and couples to a stimulation of adenyl cyclase when expressed in COS-7 cells. However, many 5-HT7-specific agonists have low affinity for SER-7. 5-HT fails to stimulate pharyngeal pumping and the firing of the MC motorneurons in animals containing the putative ser-7(tm1325) and ser-7(tm1728) null alleles. In addition, although pumping on bacteria is upregulated in ser-7(tm1325) animals, pumping is more irregular. A similar failure to maintain “fast pumping” on bacteria also was observed in ser-1(ok345) and tph-1(mg280) animals that contain putative null alleles of a 5-HT2-like receptor and tryptophan hydroxylase, respectively, suggesting that serotonergic signaling, although not essential for the upregulation of pumping on bacteria, “fine tunes” the process. 5-HT also fails to stimulate egg laying in ser-7(tm1325), ser-1(ok345), and ser-7(tm1325) ser-1(ok345) animals, but only the ser-7 ser-1 double mutants exhibit an Egl phenotype. All of the SER-7 mutant phenotypes are rescued by the expression of full-length ser-7∷gfp translational fusions. ser-7∷gfp is expressed in several pharyngeal neurons, including the MC, M2, M3, M4, and M5, and in vulval muscle. Interestingly, 5-HT inhibits egg laying and pharyngeal pumping in ser-7 null mutants and the 5-HT inhibition of egg laying, but not pumping, is abolished in ser-7(tm1325);ser-4(ok512) double mutants. Taken together, these results suggest that SER-7 is essential for the 5-HT stimulation of both egg laying and pharyngeal pumping, but that other signaling pathways can probably fulfill similar roles in vivo.
The Journal of Neuroscience | 2007
Rachel T. Wragg; Vera Hapiak; Sarah B. Miller; Gareth Harris; John A. Gray; Patricia R. Komuniecki; Richard Komuniecki
Biogenic amines modulate key behaviors in both vertebrates and invertebrates. In Caenorhabditis elegans, tyramine (TA) and octopamine (OA) inhibit aversive responses to 100%, but not dilute (30%) octanol. TA and OA also abolish food- and serotonin-dependent increases in responses to dilute octanol in wild-type but not tyra-3(ok325) and f14d12.6(ok371) null animals, respectively, suggesting that TA and OA modulated responses to dilute octanol are mediated by separate, previously uncharacterized, G-protein-coupled receptors. TA and OA are high-affinity ligands for TYRA-3 and F14D12.6, respectively, based on their pharmacological characterization after heterologous expression. f14d12.6::gfp is expressed in the ASHs, the neurons responsible for sensitivity to dilute octanol, and the sra-6-dependent expression of F14D12.6 in the ASHs is sufficient to rescue OA sensitivity in f14d12.6(ok371) null animals. In contrast, tyra-3::gfp appears not to be expressed in the ASHs, but instead in other neurons, including the dopaminergic CEP/ADEs. However, although dopamine (DA) also inhibits 5-HT-dependent responses to dilute octanol, TA still inhibits in dop-2; dop-1; dop-3 animals that do not respond to DA and cat-2(tm346) and Pdat-1::ICE animals that lack significant dopaminergic signaling, suggesting that DA is not an intermediate in TA inhibition. Finally, responses to TA and OA selectively desensitize after preexposure to the amines. Our data suggest that although tyraminergic and octopaminergic signaling yield identical phenotypes in these olfactory assays, they act independently through distinct receptors to modulate the ASH-mediated locomotory circuit and that C. elegans is a useful model to study the aminergic modulation of sensory-mediated locomotory behaviors.
Molecular and Biochemical Parasitology | 2000
John Plenefisch; Hong Xiao; Baisong Mei; Jinming Geng; Patricia R. Komuniecki; Richard Komuniecki
A novel fatty acid binding protein, As-p18, is secreted into both the perivitelline and perienteric fluids of the parasitic nematode, Ascaris suum, and at least eight potential homologues of As-p18 have been identified in the Caenorhabditis elegans genome. The products of the three most closely related homologues are fatty acid binding proteins (LBP-1, LBP-2 and LBP-3) which contain putative secretory signals. Phylogenetic analysis revealed that these secreted fatty acid binding proteins comprise a distinct gene class within the fatty acid binding protein family and are possibly unique to nematodes. To examine the potential sites of As-p18 secretion, the expression of the putative promoters of the C. elegans homologues was examined with GFP reporter constructs. The developmental expression of lbp-1 was identical to that of As-p18 and consistent with the secretion of LBP-1 from the hypodermis to the perivitelline fluid. The expression patterns of lbp-2 and lbp-3 were consistent with the secretion of LBP-2 and LBP-3 from muscle into the perienteric fluid later in development. These studies demonstrate that at least some perivitelline fluid proteins appear to be secreted from the hypodermis prior to the formation of the cuticle and, perhaps more importantly, that this coordinate C. elegans/A. suum approach may be potentially useful for examining a number of key physiological processes in parasitic nematodes.
Genetics | 2008
Vera Hapiak; Robert J. Hobson; Lindsay J. Hughes; Katherine Smith; Gareth Harris; Christina Condon; Patricia R. Komuniecki; Richard Komuniecki
Serotonin (5-HT) regulates key processes in both vertebrates and invertebrates. Previously, four 5-HT receptors that contributed to the 5-HT modulation of egg laying were identified in Caenorhabditis elegans. Therefore, to assess potential receptor interactions, we generated animals containing combinations of null alleles for each receptor, especially animals expressing only individual 5-HT receptors. 5-HT-stimulated egg laying and egg retention correlated well with different combinations of predicted excitatory and inhibitory serotonergic inputs. For example, 5-HT did not stimulate egg laying in ser-1, ser-7, or ser-7 ser-1 null animals, and ser-7 ser-1 animals retained more eggs than wild-type animals. In contrast, 5-HT-stimulated egg laying in ser-4;mod-1 animals was greater than in wild-type animals, and ser-4;mod-1 animals retained fewer eggs than wild-type animals. Surprisingly, ser-4;mod-1;ser-7 ser-1 animals retained the same number of eggs as wild-type animals and exhibited significant 5-HT-stimulated egg laying that was dependent on a previously uncharacterized receptor, SER-5. 5-HT-stimulated egg laying was absent in ser-5;ser-4;mod-1;ser-7 ser-1 animals, and these animals retained more eggs than either wild-type or ser-4;mod-1;ser-7 ser-1 animals. The 5-HT sensitivity of egg laying could be restored by ser-5 muscle expression. Together, these results highlight the dual excitatory/inhibitory serotonergic inputs that combine to modulate egg laying.
Molecular and Biochemical Parasitology | 1987
Patricia R. Komuniecki; Lisa Vanover
Ascaris suum L3 larvae isolated from rabbit lungs undergo the third ecdysis to L4 larvae after 3 days in culture under a gas phase of 85% N2/10% CO2/5% O2. The L3 larvae contain substantial malic enzyme activity and are capable of producing small amounts of the reduced organic acids characteristic of the fermentative pathways which operate in the adult. However, only a small portion of the total carbon utilized is accounted for by these reduced acids and their motility is cyanide-sensitive, suggesting that their energy-generating pathways are predominantly aerobic. In contrast, after ecdysis, the L4 larvae begin to utilize glucose at a greater rate and the proportion of total carbon utilized which is accounted for as propionate, 2-methylbutyrate and 2-methylvalerate also increases. In addition, motility becomes increasingly cyanide-insensitive, suggesting that these L4 larvae are able to utilize the anaerobic energy-generating pathways of the adult. Surprisingly, on day 10 in culture, these L4 larvae, although capable of producing reduced volatile acids, still retain substantial cyanide-sensitive cytochrome oxidase activity.
PLOS ONE | 2011
Gareth Harris; Amanda Korchnak; Philip Summers; Vera Hapiak; Wen Jing Law; Andrew M. Stein; Patricia R. Komuniecki; Richard Komuniecki
Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food–stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the “food signal” and serotonergic signaling in the modulation of sensory-mediated aversive behaviors.
Journal of Parasitology | 1981
Richard Komuniecki; Patricia R. Komuniecki; Howard J. Saz
The rate of 14CO2 evolution from 1-[14C]pyruvate by intact Ascaris mitochondria was very slow, but increased with increasing concentrations of pyruvate. At all concentrations of pyruvate, in an aerobic environment, pyruvate decarboxylation was stimulated greatly by the addition of fumarate, malate, or succinate. However, under anaerobic conditions, only malate and fumarate stimulated pyruvate decarboxylation; succinate had no effect. This implies that the aerobic metabolism of succinate, presumably to other dicarboxylic acids, may be required for the stimulation. Incubation of sonicated mitochondria with pyruvate plus fumarate, under rate-limiting concentrations of NAD+, resulted in approximately equal quantities of pyruvate utilized and succinate formed, suggesting that pyruvate oxidation and fumarate reduction may be linked. Branched-chain, volatile fatty acids were not formed during incubations with either malate or succinate, or succinate plus acetate. However, incubations of intact Ascaris mitochondria with pyruvate plus succinate yielded 2-methylbutyrate and 2-methylvalerate, whereas incubations with pyruvate plus propionate yielded almost exclusively 2-methylvalerate. Oxygen dramatically inhibited the synthesis of the branched-chain acids from succinate plus pyruvate, attesting to the apparent anaerobic nature of Ascaris mitochondrial metabolism. Significantly, the addition of glucose plus ADP stimulated the formation of all volatile fatty acids. Therefore, the synthesis of branched-chain acids may be related directly to increased energy generation. Alternatively, they may function in the regulatory role of maintaining the mitochondrial redox balance.
Journal of Parasitology | 1981
Richard Komuniecki; Patricia R. Komuniecki; Howard J. Saz
Disrupted Ascaris mitochondria formed 2-methylbutyrate (2-MB) and 2-methylvalerate (2-MV) when incubated anaerobically with acetyl CoA, propionyl CoA and NADH. However, when mitochondrial membranes were removed by high speed centrifugation and the mitochondrial soluble fraction was incubated with the same substrates, 2-methylcrotonate (tiglate) and a compound tentatively identified as 2-methyl-2- pentenoate accumulated rather than 2-MB or 2-MV. These data suggest that the terminal reduction of the unsaturated intermediates to the saturated 2-MB and 2-MV was catalyzed by an enzyme system at least partially bound to membranes. This supposition was further supported by the findings that disrupted Ascaris mitochondria also formed 2-MB and lesser amounts of 2-MV when incubated with tiglyl CoA plus NADH, and both soluble and membrane-bound components appear to be involved in this reduction. The possibility that electron transport associated ATP synthesis may be coupled to these reductions remains to be examined.
International Journal for Parasitology | 1995
Timothy J. C. Anderson; Richard Komuniecki; Patricia R. Komuniecki; John Jaenike
Mitochondrial DNA (mtDNA) is finding increasing usage as a tool for studying the systematics, population genetics and epidemiology of parasitic helminths, and is generally assumed to be inherited maternally. Yet two features of Ascaris biology--fertilization by large amoeboid sperm and some novel aspects of sperm mitochondria--suggest a paternal component to mitochondrial inheritance in this organism. In this study, we compare mtDNA restriction patterns of parental worms with those of their progeny but find no evidence for paternal inheritance. We suggest that sperm-derived mitochondria are actively destroyed or outcompeted by maternal organelles in the zygote.
Journal of Biological Chemistry | 1996
Michele M. Klingbeil; Daniel J. Walker; Robin Arnette; Emil Sidawy; Karen Hayton; Patricia R. Komuniecki; Richard Komuniecki
A novel dihydrolipoyl dehydrogenase-binding protein (E3BP) which lacks an amino-terminal lipoyl domain, p45, has been identified in the pyruvate dehydrogenase complex (PDC) of the adult parasitic nematode, Ascaris suum. Sequence at the amino terminus of p45 exhibited significant similarity with internal E3-binding domains of dihydrolipoyl transacetylase (E2) and E3BP. Dissociation and resolution of a pyruvate dehydrogenase-depleted adult A. suum PDC in guanidine hydrochloride resulted in two E3-depleted E2 core preparations which were either enriched or substantially depleted of p45. Following reconstitution, the p45-enriched E2 core exhibited enhanced E3 binding, whereas, the p45-depleted E2 core exhibited dramatically reduced E3 binding. Reconstitution of either the bovine kidney or A. suum PDCs with the A. suum E3 suggested that the ascarid E3 was more sensitive to NADH inhibition when bound to the bovine kidney core. The expression of p45 was developmentally regulated and p45 was most abundant in anaerobic muscle. In contrast, E3s isolated from anaerobic muscle or aerobic second-stage larvae were identical. These results suggest that during the transition to anaerobic metabolism, E3 remains unchanged, but it appears that a novel E3BP, p45, is expressed which may help to maintain the activity of the PDC in the face of the elevated intramitochondrial NADH/NAD ratios associated with anaerobiosis.