Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Roelants is active.

Publication


Featured researches published by Patricia Roelants.


Malaria Journal | 2006

Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis

Katrijn Verhaeghen; Wim Van Bortel; Patricia Roelants; Thierry Backeljau; Marc Coosemans

BackgroundAppropriate monitoring of vector resistance to insecticides is an integral component of planning and evaluation of insecticide use in malaria control programmes. The malaria vectors Anopheles gambiae s.s. and Anopheles arabiensis have developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, better known as knockdown resistance (kdr). In An. gambiae s.s. and An. arabiensis, two different substitutions in the para-type sodium channel, a L1014F substitution common in West Africa and a L1014S replacement found in Kenya, are linked with kdr. Two different allele-specific polymerase chain reactions (AS-PCR) are needed to detect these known kdr mutations. However, these AS-PCR assays rely on a single nucleotide polymorphism mismatch, which can result in unreliable results.MethodsHere, a new assay for the detection of knockdown resistance in An. gambiae s.s. and An. arabiensis based on Fluorescence Resonance Energy Transfer/Melt Curve analysis (FRET/MCA) is presented and compared with the existing assays.ResultsThe new FRET/MCA method has the important advantage of detecting both kdr alleles in one assay. Moreover, results show that the FRET/MCA is more reliable and more sensitive than the existing AS-PCR assays and is able to detect new genotypes. By using this technique, the presence of the East African kdr mutation (L1014S) is shown for the first time in An. arabiensis specimens from Uganda. In addition, a new kdr genotype is reported in An. gambiae s.s. from Uganda, where four An. gambiaes.s. mosquitoes possess both, the West (L1014F) and East (L1014S) African kdr allele, simultaneously.ConclusionThe presence of both kdr mutations in the same geographical region shows the necessity of a reliable assay that enables to detect both mutations in one single assay. Hence, this new assay based on FRET/MCA will improve the screening of the kdr frequencies in An. gambiae s.s. and An. arabiensis.


Insect Molecular Biology | 2000

Molecular identification of Anopheles minimus s.l. beyond distinguishing the members of the species complex

W. Van Bortel; Ho Dinh Trung; Patricia Roelants; Ralph E. Harbach; T. Backeljau; M. Coosemans

Correct species identification is the starting point for studying the epidemiological role of vectors. Identification is mostly achieved using morphological criteria, but this fails when sibling species and species with overlapping morphological characters are involved. The problem with the identification of Anopheles minimus s.l., one of the most widespread malaria vectors in South‐East Asia, is twofold: it is a complex of at least two isomorphic species, and based on morphology, members of the complex are difficult to distinguish from closely related species. An identification method was developed for An. minimus species A and C, and four related species, An. aconitus, An. pampanai, An. varuna and An. jeyporiensis. PCR‐amplified internal transcribed spacer 2 (ITS2) ribonuclear DNA (rDNA) fragments were digested with restriction endonuclease BsiZI. Clear diagnostic banding patterns for the six species were obtained on agarose gels. Testing field‐collected specimens from different regions in South‐East Asia indicated that the technique will be applicable over a wide geographical area. From this it is clear that molecular identification has to focus not only on the species of complexes, but also on related species if they hamper the morphological identification of the ‘sensu lato species’.


Malaria Journal | 2011

False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

Wim Van Bortel; Leen Denis; Patricia Roelants; Aurélie Veracx; Ho Dinh Trung; Tho Sochantha; Marc Coosemans

BackgroundThe entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies.MethodsMosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked.ResultsSpecimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens.ConclusionThe CSP-ELISA can considerably overestimate the EIR, particularly for P. falciparum and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing Plasmodium specific PCR followed if possible by sequencing of the amplicons for Plasmodium species determination.


Malaria Journal | 2008

The insecticide resistance status of malaria vectors in the Mekong region

Wim Van Bortel; Ho Dinh Trung; Le Khanh Thuan; Tho Sochantha; Duong Socheat; Chalao Sumrandee; Visut Baimai; K. Keokenchanh; Phompida Samlane; Patricia Roelants; Leen Denis; Katrijn Verhaeghen; Valérie Obsomer; Marc Coosemans

BackgroundKnowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.MethodsA network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.ResultsAnopheles dirus s.s., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, Anopheles epiroticus was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant Anopheles minimus s.l. populations were found, whereas An. minimus s.l. from Cambodia, Laos and Thailand were susceptible. Only two An. minimus s.l. populations showed DDT tolerance. Anopheles vagus was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.ConclusionThis is the first large scale, cross-country survey of insecticide resistance in Anopheles species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.


Tropical Medicine & International Health | 1999

Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences.

Wim Van Bortel; Ho Dinh Trung; N. D. Manh; Patricia Roelants; P. Verlé; Marc Coosemans

Summary Elucidating the complex taxonomic status of the major malaria vector taxa and characterising the individual species within each complex is important for understanding the complexity of the vector system in the south‐east Asian region and will allow to estimate the impact of vector control measures. This applies to countries such as Laos, Cambodia and Vietnam that spend about 60% of their malaria control budget on implementing vector control activities. We used isozyme electrophoresis to clarify the Anopheles minimus s.l. species composition in northern Vietnam and identify behavioural divergences of individual species. Using different collection methods, adult mosquitoes were caught at monthly intervals from June to November 1995 in four villages. An. minimus s.l. could be distinguished from closely related species, An. aconitus and An. jeyporiensis, at the Octanol dehydrogenase (Odh) enzyme locus. Significant positive Fis values gave clear evidence of nonrandom mating within the An. minimus s.l. population. The highest heterozygote deficiency was observed at locus Odh, which was diagnostic for 2 sympatric An. minimus species in Vietnam similar to the An. minimus A and C species known from Thailand. We found no evidence for restricted gene flow between monthly samples, villages, or collection methods in either of the two An. minimus species. They occurred in sympatry, but in different proportions depending on the collection site, and had dissimilar resting and biting behaviours. Thus a vector control strategy will have a nonuniform effect on the various components of this diverse vector system.


Tropical Medicine & International Health | 2008

A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands

Natacha Protopopoff; Katrijn Verhaeghen; W. Van Bortel; Patricia Roelants; T. Marcotty; Dismas Baza; Umberto D'Alessandro; Marc Coosemans

Objectives and Methods  In Burundi, the occurrence of the knock down resistance (kdr) mutation in Anopheles gambiae sensu lato (s.l.) was determined for six consecutive years within the framework of a vector control programme. Findings were also linked with the insecticide resistance status observed with bioassay in An. gambiae s.l. and An. funestus.


Malaria Journal | 2013

Outdoor malaria transmission in forested villages of Cambodia

Sokny Mao; Leen Denis; Patricia Roelants; Tho Sochantha; Marc Coosemans

BackgroundDespite progress in malaria control, malaria remains an important public health concern in Cambodia, mostly linked to forested areas. Large-scale vector control interventions in Cambodia are based on the free distribution of long-lasting insecticidal nets (LLINs), targeting indoor- and late-biting malaria vectors only. The present study evaluated the vector density, early biting activity and malaria transmission of outdoor-biting malaria vectors in two forested regions in Cambodia.MethodsIn 2005 two entomological surveys were conducted in 12 villages and their related forest plots in the east and west of Cambodia. Mosquitoes were collected outdoors by human landing collections and subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium sporozoites after morphological identification. Blood samples were collected in the same villages for serological analyses. Collected data were analysed by the classification and regression tree (CART) method and linear regression analysis.ResultsA total of 11,826 anophelines were recorded landing in 787 man-night collections. The majority (82.9%) were the known primary and secondary vectors. Most of the variability in vector densities and early biting rates was explained by geographical factors, mainly at village level. Vector densities were similar between forest and village sites. Based on ELISA results, 29% out of 17 Plasmodium-positive bites occurred before sleeping time, and 65% in the forest plots. The entomological inoculation rates of survey 1 were important predictors of the respective seroconversion rates in survey 2, whereas the mosquito densities were not.DiscussionIn Cambodia, outdoor malaria transmission in villages and forest plots is important. In this context, deforestation might result in lower densities of the primary vectors, but also in higher densities of secondary vectors invading deforested areas. Moreover, higher accessibility of the forest could result in a higher man-vector contact. Therefore, additional vector control measures should be developed to target outdoor- and early-biting vectors.


American Journal of Tropical Medicine and Hygiene | 2001

Confirmation of Anopheles varuna in vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus.

W. van Bortel; Ralph E. Harbach; Ho Dinh Trung; Patricia Roelants; T. Backeljau; Marc Coosemans

Malaria control programs in Southeast Asia are faced with several questions concerning vector behavior and species identification, which need to be answered to consolidate and further improve the results of control practices. The vector system in Southeast Asia is complex because of the number of species potentially involved in malaria transmission. Additionally, the follow-up and evaluation of preventive control measures are hampered by the misidentification of vectors due to overlapping morphological characters of the female mosquitoes. In central Vietnam, control practices are aimed at 2 main species, Anopheles dirus s.l. and Anopheles minimus s.l. These reputed vectors were studied in an area of Binh Thuan Province of south-central Vietnam. Different collection methods were used to capture mosquitoes quarterly during a 1-year period. Mosquitoes were identified in the field and later subjected to detailed morphological examination and polymerase chain reaction-restriction fragment length polymorphism analysis. What was thought to be an unusual morphotype of An. minimus was shown to be Anopheles varuna, and most specimens identified as the former species in the field proved to be the latter species. Very few An. minimus individuals were found during the study period. The population of An. varuna was found to be highly zoophilic, and based on this behavior, it cannot be considered a vector in Vietnam. Because this species was previously being misidentified as An. minimus, a nonvector was mistargeted as a malaria vector in Binh Thuan Province. Anopheles dirus, which was found positive for Plasmodium falciparum circumsporozoite via enzyme-linked immunosorbent assay, is clearly the main vector in this area. Despite the fact that several potential secondary vectors were found during the study, the primary target for vector control in the region should be An. dirus.


American Journal of Tropical Medicine and Hygiene | 2010

Spatio-Temporal Patterns in kdr Frequency in Permethrin and DDT Resistant Anopheles gambiae s.s. from Uganda

Katrijn Verhaeghen; Wim Van Bortel; Patricia Roelants; Paul Edward Okello; Ambrose Talisuna; Marc Coosemans

The planned upscaling of vector control strategies requires insight into the epidemiological consequences of vector resistance. Therefore, the pyrethroid and DDT resistance status of Anopheles gambiae s.l. was assessed in Uganda from 2004 to 2006, and spatial and seasonal variations in knockdown resistance (kdr) frequencies were analyzed in terms of epidemiological significance. Anopheles gambiae s.l. was DDT and pyrethroid resistant in central and eastern Uganda. The L1014S kdr allele frequencies varied from 3% to 48% in An. gambiae s.s. Although the homozygous resistant genotype was the most prevalent genotype among survivors, the genotypes could not entirely explain the bioassay results. In the dry season, the kdr frequency was significantly higher in Plasmodium falciparum-infected mosquitoes, indicating that mosquitoes bearing a kdr mutation have a better adult survival, hence a higher likelihood of becoming infectious. This study showed that kdr might have an epidemiological impact that could jeopardize the vector control strategies.


Malaria Journal | 2010

Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

Wim Van Bortel; Ho Dinh Trung; Le Xuan Hoi; Nguyen Van Ham; Nguyen Van Chut; Nguyen Dinh Luu; Patricia Roelants; Leen Denis; Niko Speybroeck; Umberto D'Alessandro; Marc Coosemans

BackgroundIn Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province.MethodsFive entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses.ResultsThe mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium- infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors.ConclusionThe vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed.

Collaboration


Dive into the Patricia Roelants's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Van Bortel

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

T. Backeljau

Royal Belgian Institute of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Coosemans

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Leen Denis

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Katrijn Verhaeghen

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Van Bortel

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge