Patricia S. Estes
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia S. Estes.
The Journal of Neuroscience | 1996
Patricia S. Estes; Jack Roos; Alexander M. van der Bliek; Regis B. Kelly; K. S. Krishnan; Mani Ramaswami
Presynaptic terminals contain several specialized compartments, which have been described by electron microscopy. We show in an identified Drosophila neuromuscular synapse that several of these compartments—synaptic vesicle clusters, presynaptic plasma membrane, presynaptic cytosol, and axonal cytoskeleton—labeled by specific reagents may be resolved from one another by laser scanning confocal microscopy. Using a panel of compartment-specific markers andDrosophila shibirets1 mutants to trap an intermediate stage in synaptic vesicle recycling, we have examined the localization and redistribution of dynamin within single synaptic varicosities at the larval neuromuscular junction. Our results suggest that dynamin is not a freely diffusible molecule in resting nerve terminals; rather, it appears localized to synaptic sites by association with yet uncharacterized presynaptic components. Inshits1 nerve terminals depleted of synaptic vesicles, dynamin is quantitatively redistributed to the plasma membrane. It is not, however, distributed uniformly over presynaptic plasmalemma; instead, fluorescence images show “hot spots” of dynamin on the plasma membrane of vesicle-depleted nerve terminals. We suggest that these dynamin-rich domains may mark the active zones for synaptic vesicle endocytosis first described at the frog neuromuscular junction.
Neuron | 2001
K. S. Krishnan; Richa Rikhy; Sujata Rao; Madhuri Shivalkar; Michael Mosko; Radhakrishnan Narayanan; Paul D. Etter; Patricia S. Estes; Mani Ramaswami
Nucleoside diphosphate kinase (NDK), an enzyme encoded by the Drosophila abnormal wing discs (awd) or human nm23 tumor suppressor genes, generates nucleoside triphosphates from respective diphosphates. We demonstrate that NDK regulates synaptic vesicle internalization at the stage where function of the dynamin GTPase is required. awd mutations lower the temperature at which behavioral paralysis, synaptic failure, and blocked membrane internalization occur at dynamin-deficient, shi(ts), mutant nerve terminals. Hypomorphic awd alleles display shi(ts)-like defects. NDK is present at synapses and its enzymatic activity is essential for normal presynaptic function. We suggest a model in which dynamin activity in nerve terminals is highly dependent on NDK-mediated supply of GTP. This connection between NDK and membrane internalization further strengthens an emerging hypothesis that endocytosis, probably of activated growth factor receptors, is an important tumor suppressor activity in vivo.
Journal of Neurogenetics | 2000
Patricia S. Estes; Grace L.Y. Ho; Radhakrishnan Narayanan; Mani Ramaswami
Fluorescent markers for subcellular compartments in Drosophila neurons should allow one to combine genetic mutant analysis with visualization of subcellular structures in vivo. Here we describe an analysis of two markers which may be used to observe different compartments of live Drosophila synapses. Soluble jellyfish green fluorescent protein (GFP) expressed at high levels in neurons diffuses freely in the neuronal cytosol as evidenced by confocal microscopy and fluorescence recovery from photobleaching experiments. Thus, the distribution pattern of soluble GFP in motor axons and larval motor terminals indicates the expected distribution for diffusible presynaptic molecules. In contrast to GFP. a neurally expressed neuronal synaptobrevin-GFP chimera (n-syb GFP) is transported down axons and specifically localized to nerve terminals. We demonstrate that n-syb GFP labels synaptic-vesicle membrane at larval motor terminals by documenting its restriction to presynaptic varicosities, its colocalization with synaptic vesicle antigens, and its redistribution in Drosophila shits1 mutant nerve terminals transiently depleted of synaptic vesicles. Surprisingly, n-syb GFP expressed in muscle is concentrated at the subsynaptic reticulum (SSR). postsynaptic infoldings of muscle plasma membrane. We suggest, using different membrane markers, that this apparent postsynaptic enrichment simply reflects a concentration of plasma membrane in the SSR, rather than a selective targeting of n-syb GFP to postsynaptic sites. Utilities and implications of these studies are demonstrated or discussed.
Human Molecular Genetics | 2011
Patricia S. Estes; Ashley V. Boehringer; Rebecca Zwick; Jonathan E. Tang; Brianna Grigsby; Daniela C. Zarnescu
The RNA-binding protein TDP-43 has been linked to amyotrophic lateral sclerosis (ALS) both as a causative locus and as a marker of pathology. With several missense mutations being identified within TDP-43, efforts have been directed towards generating animal models of ALS in mouse, zebrafish, Drosophila and worms. Previous loss of function and overexpression studies have shown that alterations in TDP-43 dosage recapitulate hallmark features of ALS pathology, including neuronal loss and locomotor dysfunction. Here we report a direct in vivo comparison between wild-type and A315T mutant TDP-43 overexpression in Drosophila neurons. We found that when expressed at comparable levels, wild-type TDP-43 exerts more severe effects on neuromuscular junction architecture, viability and motor neuron loss compared with the A315T allele. A subset of these differences can be compensated by higher levels of A315T expression, indicating a direct correlation between dosage and neurotoxic phenotypes. Interestingly, larval locomotion is the sole parameter that is more affected by the A315T allele than wild-type TDP-43. RNA interference and genetic interaction experiments indicate that TDP-43 overexpression mimics a loss-of-function phenotype and suggest a dominant-negative effect. Furthermore, we show that neuronal apoptosis does not require the cytoplasmic localization of TDP-43 and that its neurotoxicity is modulated by the proteasome, the HSP70 chaperone and the apoptosis pathway. Taken together, our findings provide novel insights into the phenotypic consequences of the A315T TDP-43 missense mutation and suggest that studies of individual mutations are critical for elucidating the molecular mechanisms of ALS and related neurodegenerative disorders.
Molecular and Cellular Neuroscience | 2008
Patricia S. Estes; Michele O'Shea; Sara Clasen; Daniela C. Zarnescu
Fragile X syndrome, the most common form of inherited mental retardation is caused by mutations in the FMR1 gene. FMR1 encodes an RNA-binding protein thought to control the transport and translation of target mRNAs. While the function of FMRP in translational control has been clearly demonstrated, its role in mRNA transport and localization in neurons remains elusive. Using a genetically encoded mRNA imaging system in Drosophila we provide the first demonstration that FMRP controls mRNA transport. Live imaging of FMRP associated mRNAs show that mRNA granules are less motile and exhibit decreased directional movement in dFmr1 mutant neurons. Furthermore, Fluorescence Recovery After Photobleaching experiments show that the mobile fraction of mRNA molecules within neurites is dependent on FMRP dosage. These data support a model whereby FMRP regulates transport efficacy, by regulating the association between mRNA cargo and microtubules and suggest a new mechanism for the disease.
The Journal of Neuroscience | 2014
Alyssa N. Coyne; Bhavani Bagevalu Siddegowda; Patricia S. Estes; Jeffrey Johannesmeyer; Tina Kovalik; Scott G. Daniel; Antony Pearson; Robert Bowser; Daniela C. Zarnescu
TDP-43 is an RNA-binding protein linked to amyotrophic lateral sclerosis (ALS) that is known to regulate the splicing, transport, and storage of specific mRNAs into stress granules. Although TDP-43 has been shown to interact with translation factors, its role in protein synthesis remains unclear, and no in vivo translation targets have been reported to date. Here we provide evidence that TDP-43 associates with futsch mRNA in a complex and regulates its expression at the neuromuscular junction (NMJ) in Drosophila. In the context of TDP-43-induced proteinopathy, there is a significant reduction of futsch mRNA at the NMJ compared with motor neuron cell bodies where we find higher levels of transcript compared with controls. TDP-43 also leads to a significant reduction in Futsch protein expression at the NMJ. Polysome fractionations coupled with quantitative PCR experiments indicate that TDP-43 leads to a futsch mRNA shift from actively translating polysomes to nontranslating ribonuclear protein particles, suggesting that in addition to its effect on localization, TDP-43 also regulates the translation of futsch mRNA. We also show that futsch overexpression is neuroprotective by extending life span, reducing TDP-43 aggregation, and suppressing ALS-like locomotor dysfunction as well as NMJ abnormalities linked to microtubule and synaptic stabilization. Furthermore, the localization of MAP1B, the mammalian homolog of Futsch, is altered in ALS spinal cords in a manner similar to our observations in Drosophila motor neurons. Together, our results suggest a microtubule-dependent mechanism in motor neuron disease caused by TDP-43-dependent alterations in futsch mRNA localization and translation in vivo.
Disease Models & Mechanisms | 2013
Patricia S. Estes; Scott G. Daniel; Abigail P. Mccallum; Ashley V. Boehringer; Alona S. Sukhina; Rebecca Zwick; Daniela C. Zarnescu
SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.
Human Molecular Genetics | 2015
Alyssa N. Coyne; Shizuka Yamada; Bhavani Bagevalu Siddegowda; Patricia S. Estes; Benjamin L. Zaepfel; Jeffrey Johannesmeyer; Donovan B. Lockwood; Linh T. Pham; Michael P. Hart; Joel A. Cassel; Brian D. Freibaum; Ashley V. Boehringer; J. Paul Taylor; Allen B. Reitz; Aaron D. Gitler; Daniela C. Zarnescu
RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.
Biology Open | 2018
Scott G. Daniel; Atlantis Russ; Kathryn M. Guthridge; Ammad I. Raina; Patricia S. Estes; Linda M. Parsons; Helena E. Richardson; Joyce A. Schroeder; Daniela C. Zarnescu
ABSTRACT Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgls human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgls role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
international conference on bioinformatics | 2010
Jinane Mounsef; Lina J. Karam; Patricia S. Estes; Daniela Zamescu
Among the tumor suppressors identified in Drosophila, lgl is one of a few whose proliferative phenotype is shown to be secondary to a loss of cell polarity. Studies of lgl mutant phenotypes are likely to contribute to our understanding of both tumorigenesis as well as neural development mechanisms. However, alterations of neuronal development as a result of key protein mutations are not easy to describe without quantifiable parameters. This work presents a fully automated imaging technique that involves skeletonization and histogram-based features such as kurtosis to find and quantify discriminative morphological phenotypes that can be used to automatically distinguish normal wild-type neurons from lgl mutant neurons.