Patricia S. Romano
Facultad de Ciencias Médicas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia S. Romano.
Cellular Microbiology | 2007
Patricia S. Romano; Maximiliano G. Gutierrez; Walter Berón; Michel Rabinovitch; María I. Colombo
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24–48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation‐induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.
Autophagy | 2011
Michael Duszenko; Michael L. Ginger; Ana Brennand; Melisa Gualdrón-López; María I. Colombo; Graham H. Coombs; Isabelle Coppens; Bamini Jayabalasingham; Gordon Langsley; Solange L. de Castro; Rubem F. S. Menna-Barreto; Jeremy C. Mottram; Miguel Navarro; Daniel J. Rigden; Patricia S. Romano; Veronika Stoka; Boris Turk; Paul A. M. Michels
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Autophagy | 2009
Patricia S. Romano; María A. Arboit; Cristina Lourdes Vázquez; María Isabel Colombo
The etiologic agent of Chagas disease, Trypanosoma cruzi, infects mammalian cells activating a signal transduction cascade that leads to the formation of its parasitophorous vacuole. Previous works have demonstrated the crucial role of lysosomes in the establishment of T. cruzi infection. In this work we have studied the possible relationship between this parasite and the host cell autophagy. We show, for the first time, that the vacuole containing T. cruzi (TcPV) is decorated by the host cell autophagic protein LC3. Furthermore, live cell imaging experiments indicate that autolysosomes are recruited to parasite entry sites. Interestingly, starvation or pharmacological induction of autophagy before infection significantly increased the number of infected cells whereas inhibitors of this pathway reduced the invasion. In addition, the absence of Atg5 or the reduced expression of Beclin1, two proteins required at the initial steps of autophagosome formation, limited parasite entry and reduced the association between TcPV and the classical lysosomal marker Lamp-1. These results indicate that mammalian autophagy is a key process that favors the colonization of T. cruzi in the host cell.
Autophagy | 2006
María Isabel Colombo; Maximiliano G. Gutierrez; Patricia S. Romano
In the world of pathogen-host cell interactions, the autophagic pathway has beenrecently described as a component of the innate immune response against intracellularmicroorganisms. Indeed, some bacterial survival mechanisms are hampered when thisprocess is activated. Mycobacterium tuberculosis infection of macrophages, for example,is impaired upon autophagy induction and the bacterial phagosomes are redirected toautophagosomes. On the other hand, pathogens like Coxiella burnetii are benefited bythis cellular response and subvert the autophagy process resulting in a more efficient replication.We study at the molecular level these two different faces of the autophagy processin pathogen life in order to elucidate the intricate routes modulated by the microorganismsas survival strategies.
Iubmb Life | 2012
Patricia S. Romano; Juan Agustín Cueto; Ana Florencia Casassa; María Cristina Vanrell; Roberta A. Gottlieb; María I. Colombo
The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic‐like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal‐dependent or ‐independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells. 2012 IUBMB IUBMB Life, 2012
European Journal of Medicinal Chemistry | 2015
Carolina L. Bellera; Darío E. Balcazar; M. Cristina Vanrell; A. Florencia Casassa; Pablo H. Palestro; Luciana Gavernet; Carlos Alberto Labriola; Jorge Gálvez; Luis E. Bruno-Blanch; Patricia S. Romano; Carolina Carrillo; Alan Talevi
In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.e. finding second or further medical uses for known-medications) which can substantially improve the success at clinical trials and the innovation in the pharmaceutical field. In this work, we present the computer-aided identification of approved drugs clofazimine, benidipine and saquinavir as potential trypanocidal compounds and test their effects at biochemical as much as cellular level on different parasite stages. According to the obtained results, we discuss biopharmaceutical, toxicological and physiopathological criteria applied to decide to move clofazimine and benidipine into preclinical phase, in an acute model of infection. The article illustrates the potential of computer-guided drug repositioning to integrate and optimize drug discovery and preclinical development; it also proposes rational rules to select which among repositioned candidates should advance to investigational drug status and offers a new insight on clofazimine and benidipine as candidate treatments for Chagas disease. One Sentence Summary: We present the computer-guided drug repositioning of three approved drugs as potential new treatments for Chagas disease, integrating computer-aided drug screening and biochemical, cellular and preclinical tests.
FEBS Letters | 2014
Tatiana S. Cherkesova; Tatiana Y. Hargrove; M. Cristina Vanrell; Igor A. Ges; Sergey A. Usanov; Patricia S. Romano; Galina I. Lepesheva
CYP51 (sterol 14α‐demethylase) is an efficient target for clinical and agricultural antifungals and an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible to inhibition. These biochemical data are consistent with cellular experiments, both in insect and human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI and two derivatives suggests that broad‐spectrum CYP51 inhibitors are likely to be preferable as antichagasic drug candidates.
Archives of Andrology | 2002
Silvia A. Belmonte; Patricia S. Romano; T. Sartor; Miguel A. Sosa
The mammalian epididymis is an organ particularly rich in acid hydrolases, consistent with a developed lysosomal apparatus. However, some of these enzymes could also play a role in an extracellular environment, since they are actively secreted by the epithelium. In this study the authors measured the activity of five acid hydrolases distributed between the epithelium, fluid, small vesicles, and spermatozoa of the rat cauda epididymis in adult rats, and compared with that distribution under conditions of deprivation of luminal testosterone and testicular compounds (hemicastration). Lysosomal enzymes are differently compartmentalized in rat cauda epididymis. Most of g -galactosidase ( g -GAL) and aryl sulfatase (~70%) were found in soluble form within the fluid. Some 60% of N -acetyl- g -D-glucosaminidase ( g -NAG) and f -mannosidase ( f -MAN) become transiently bound to sperm, and g -glucuronidase ( g -GLU) was mostly concentrated in the epithelium. After remotion of testis this distribution changed, as the retention of f -MAN, g -GAL, g -GLU, and g -NAG by the epididiymal tissue increased. The increase of g -GLU followed an increase of synthesis of the enzyme. The distribution of enzymes in the epididymis from the contralateral side was similar to that in normal rats. The different roles for each enzyme in the epididymis are discussed.
Autophagy | 2013
María Cristina Vanrell; Juan Agustin Cueto; Jeremías José Barclay; Carolina Carrillo; María I. Colombo; Roberta A. Gottlieb; Patricia S. Romano
Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings.
Enzyme Research | 2011
Jeremías José Barclay; Luciano Gastón Morosi; María Cristina Vanrell; Edith Corina Trejo; Patricia S. Romano; Carolina Carrillo
Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP) and a heterologous ornithine decarboxylase (ODC), used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.